Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Data Acquisition
3.2. Signal Processing
3.2.1. Segmentation
3.2.2. Feature Extraction
3.2.3. Classification
3.3. Methodology to Data Processing
4. Results and Discussion
4.1. Feature and Classifier Separately
4.2. Analysis of Feature Sets
4.3. Influence of Segmentation Parameters
4.4. Analysis of Subjects
4.5. Comparison with Related Works
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADC | Analog-Digital Converter |
ANN | Artificial Neural Network |
AR | Autoregressive Coefficients |
AR4 | 4-th order Autoregressive Coefficients |
ASL | American Sign Language |
bpm | Beats per minute |
CEPS | Cepstral Coefficients |
CNN | Convolution Neural Network |
CSL | Chinese Sign Language |
DA | Discriminant Analysis |
DAMV | Difference of Absolute Mean Value |
DASDV | Difference Absolute of Standard Deviation Value |
DT | Decision Tree |
DTW | Dynamic Time Warping |
ELM | Extreme Learning Machine |
FR | Frequency Rate |
GSL | Greek Sign Language |
HIST | Histogram |
HMM | Hidden Markov Model |
IAV | Integrated Absolute Value |
IEMG | Integral of EMG |
IMU | Inertial Measurement Unity |
ISL | Indonesian Sign Language |
KNN | k-Nearest Neighbor |
KSL | Korean Sign Language |
LDA | Linear Discriminant Analysis |
Libras | Brazilian Sign Language |
LOGDEC | Log detector |
LS | L-Scale |
MAV | Mean Average Value |
MDF | Median Frequency |
MLP | Multi-Layer Perceptron |
MNF | Mean Frequency |
MNP | Mean Power |
MYOP | Myopulse percentage rate |
NB | Naïve Bayes |
PKF | Peak Frequency |
QDA | Quadratic Discriminant Analysis |
RF | Random Forest |
RMS | Root Mean Square |
SampEn | Sample Entropy |
sEMG | surface Electromyography |
SL | Sign Language |
SLR | Sign Language Recognition |
SM | Spectral Moment |
SSC | Sign Slope Crossing |
SVM | Support Vector Machine |
TM | Absolute value of temporal moment |
TSL | Thai Sign Language |
TTP | Total power |
VAREMG | Variance of EMG |
VORDER | v-Order |
WAMP | Willison Amplitude |
WL | Waveform Length |
ZC | Zero Crossing |
Appendix A
References
- Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of hand gesture and sign language recognition techniques. Int. J. Mach. Learn. Cyber. 2017, 1–23. [Google Scholar] [CrossRef]
- Abdallah, E.E.; Fayyoumi, E. Assistive Technology for Deaf People Based on Android Platform. Procedia Comput. Sci. 2016, 94, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Courtin, C. The impact of sign language on the cognitive development of deaf children: The case of theories of mind. J. Deaf Stud. Deaf Educ. 2000, 5, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hommes, R.E.; Borash, A.I.; Hartwig, K.; DeGracia, D. American Sign Language Interpreters Perceptions of Barriers to Healthcare Communication in Deaf and Hard of Hearing Patients. J. Community Health 2018, 43, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Azar, S.G.; Seyedarabi, H. Trajectory-based recognition of dynamic Persian sign language using hidden Markov model. Comput. Speech Lang. 2020, 61, 101053. [Google Scholar] [CrossRef] [Green Version]
- Almasre, M.A.; Al-Nuaim, H. A comparison of Arabic sign language dynamic gesture recognition models. Heliyon 2020, 6, e03554. [Google Scholar] [CrossRef]
- Al-Ahdal, M.E.; Nooritawati, M.T. Review in Sign Language Recognition Systems. In Proceedings of the 2012 IEEE Symposium on Computers Informatics (ISCI), Penang, Malaysia, 18–20 March 2012; pp. 52–57. [Google Scholar]
- Riillo, F.; Quitadamo, L.R.; Cavrini, F.; Saggio, G.; Pinto, C.A.; Pasto, N.C.; Sbernini, L.; Gruppioni, E. Evaluating the influence of subject-related variables on EMG-based hand gesture classification. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisbon, Portugal, 11–12 June 2014; pp. 1–5. [Google Scholar]
- Yavuz, E.; Eyupoglu, C. A cepstrum analysis-based classification method for hand movement surface EMG signals. Med. Biol. Eng. Comput. 2019, 57, 2179–2201. [Google Scholar] [CrossRef]
- Kosmidou, V.E.; Hadjileontiadis, L.J. Sign Language Recognition Using Intrinsic-Mode Sample Entropy on sEMG and Accelerometer Data. IEEE Trans. Biomed. Eng. 2009, 56, 2879–2890. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Jafari, R. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [Google Scholar] [CrossRef]
- Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors 2020, 20, 2467. [Google Scholar] [CrossRef]
- Criswell, E. Cram’s Introduction to Surface Electromyography; Jones and Bartlett Publishers: Sudbury, MA, USA, 2011. [Google Scholar]
- Raez, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, X.; Zhang, X.; Wang, K.; Wang, Z.J. A Sign-Component-Based Framework for Chinese Sign Language Recognition Using Accelerometer and sEMG Data. IEEE Trans. Biomed. Eng. 2012, 59, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, S.; Lindén, M.; Gholamhosseini, H.; Naber, A.; Ortiz-Catalan, M. Evaluation of surface EMG-based recognition algorithms for decoding hand movements. Med. Biol. Eng. Comput. 2020, 58, 83–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oskoei, M.A.; Hu, H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Trans. Biomed. Eng. 2008, 55, 1956–1965. [Google Scholar] [CrossRef]
- Saikia, A.; Kakoty, N.M.; Phukan, N.; Balakrishnan, M.; Sahai, N.; Paul, S.; Bhatia, D. Combination of EMG Features and Stability Index for Finger Movements Recognition. Procedia Comput. Sci. 2018, 133, 92–98. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 2013, 40, 4832–4840. [Google Scholar] [CrossRef]
- Barioul, R.; Fakhfakh, S.; Derbel, H.; Kanoun, O. Evaluation of EMG Signal Time Domain Features for Hand Gesture Distinction. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals Devices (SSD), Istanbul, Turkey, 21–24 March 2019; pp. 489–493. [Google Scholar]
- Shroffe, E.H.; Manimegalai, P. Hand Gesture Recognition based on EMG signals using ANN. Int. J. Comput. Appl. 2013, 2, 31–39. [Google Scholar]
- Derr, C.; Sahin, F. Signer-independent classification of American sign language word signs using surface EMG. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, Canada, 5–8 October 2017; pp. 665–670. [Google Scholar]
- Zhuang, Y.; Lv, B.; Sheng, X.; Zhu, X. Towards Chinese sign language recognition using surface electromyography and accelerometers. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; pp. 1–5. [Google Scholar]
- Zhang, X.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors. IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2011, 41, 1064–1076. [Google Scholar] [CrossRef]
- Kosmidou, V.E.; Hadjileontiadis, L.J.; Panas, S.M. Evaluation of surface EMG features for the recognition of American Sign Language gestures. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6197–6200. [Google Scholar]
- Shin, S.; Baek, Y.; Lee, J.; Eun, Y.; Son, S.H. Korean sign language recognition using EMG and IMU sensors based on group-dependent NN models. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HA, USA, 27 November–1 December 2017; pp. 1–7. [Google Scholar]
- Su, R.; Chen, X.; Cao, S.; Zhang, X. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors. Sensors 2016, 16, 100. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Tian, Z.; Sun, L.; Estevez, L.; Jafari, R. Real-time American Sign Language Recognition using wrist-worn motion and surface EMG sensors. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–6. [Google Scholar]
- Cheng, J.; Chen, X.; Liu, A.; Peng, H. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors. Sensors 2015, 15, 23303–23324. [Google Scholar] [CrossRef] [Green Version]
- Amatanon, V.; Chanhang, S.; Naiyanetr, P.; Thongpang, S. Sign language-Thai alphabet conversion based on Electromyogram (EMG). In Proceedings of the The 7th 2014 Biomedical Engineering International Conference, Fukuoka, Japan, 26–28 November 2014; pp. 1–4. [Google Scholar]
- Khamid; Wibawa, A.D.; Sumpeno, S. Gesture Recognition for Indonesian Sign Language Systems (ISLS) Using Multimodal Sensor Leap Motion and Myo Armband Controllers Based-on Naïve Bayes Classifier. In Proceedings of the 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, Indonesia, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Rahagiyanto, A.; Basuki, A.; Sigit, R. Moment Invariant Features Extraction for Hand Gesture Recognition of Sign Language based on SIBI. EMITTER Int. J. Eng. Technol. 2017, 5, 119–138. [Google Scholar] [CrossRef]
- Bastos, I.L.O.; Angelo, M.F.; Loula, A.C. Recognition of Static Gestures Applied to Brazilian Sign Language (Libras). In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015; pp. 305–312. [Google Scholar]
- Costa Filho, C.F.F.; Souza, R.S.D.; Santos, J.R.D.; Santos, B.L.D.; Costa, M.G.F.; Costa Filho, C.F.F.; Souza, R.S.D.; Santos, J.R.D.; Santos, B.L.D.; Costa, M.G.F. A fully automatic method for recognizing hand configurations of Brazilian sign language. Res. Biomed. Eng. 2017, 33, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Amaral, L.; Júnior, G.L.N.; Vieira, T.; Vieira, T. Evaluating Deep Models for Dynamic Brazilian Sign Language Recognition. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Vera-Rodriguez, R., Fierrez, J., Morales, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 930–937. [Google Scholar]
- Freitas, M.L.B.; Mendes Junior, J.J.A.; Campos, D.P.; Stevan, S.L., Jr. Hand gestures classification using multichannel sEMG armband. In Proceedings of the Anais do XXVI Congresso Brasileiro de Engenharia Biomédica, Armação dos Búzios, Brazil, 21–25 October 2018. [Google Scholar]
- Côté-Allard, U.; Gagnon-Turcotte, G.; Laviolette, F.; Gosselin, B. A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition. Sensors 2019, 19, 2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, J.G.; Teixeira, J.M.; Figueiredo, L.S.; Teichrieb, V. Evaluating Sign Language Recognition Using the Myo Armband. In Proceedings of the 2016 XVIII Symposium on Virtual and Augmented Reality (SVR), Gramado, Brazil, 21–24 June 2016; pp. 64–70. [Google Scholar]
- Mendes Junior, J.J.A.; Freitas, M.L.B.; Stevan, S.L.; Pichorim, S.F. Recognition of Libras Static Alphabet with MyoTM and Multi-Layer Perceptron. In XXVI Brazilian Congress on Biomedical Engineering; Costa-Felix, R., Machado, J.C., Alvarenga, A.V., Eds.; Springer: Singapore, 2019; pp. 413–419. [Google Scholar]
- Asogbon, M.G.; Samuel, O.W.; Geng, Y.; Chen, S.; Mzurikwao, D.; Fang, P.; Li, G. Effect of Window Conditioning Parameters on the Classification Performance and Stability of EMG-Based Feature Extraction Methods. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 576–580. [Google Scholar]
- Vaitkevičius, A.; Taroza, M.; Blažauskas, T.; Damaševičius, R.; Maskeliūnas, R.; Woźniak, M. Recognition of American Sign Language Gestures in a Virtual Reality Using Leap Motion. Appl. Sci. 2019, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Saggio, G.; Cavallo, P.; Ricci, M.; Errico, V.; Zea, J.; Benalcázar, M.E. Sign Language Recognition Using Wearable Electronics: Implementing k-Nearest Neighbors with Dynamic Time Warping and Convolutional Neural Network Algorithms. Sensors 2020, 20, 3879. [Google Scholar] [CrossRef]
- Chong, T.-W.; Kim, B.-J. American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach. J. Korea Inst. Electron. Commun. Sci. 2020, 15, 291–298. [Google Scholar] [CrossRef]
- Rastgoo, R.; Kiani, K.; Escalera, S. Hand sign language recognition using multi-view hand skeleton. Expert Syst. Appl. 2020, 150, 113336. [Google Scholar] [CrossRef]
- Xiao, Q.; Qin, M.; Yin, Y. Skeleton-based Chinese sign language recognition and generation for bidirectional communication between deaf and hearing people. Neural Netw. 2020, 125, 41–55. [Google Scholar] [CrossRef]
- Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand Gesture Recognition Using Compact CNN via Surface Electromyography Signals. Sensors 2020, 20, 672. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Sung, Y. Movement Estimation Using Soft Sensors Based on Bi-LSTM and Two-Layer LSTM for Human Motion Capture. Sensors 2020, 20, 1801. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.; Gaetani, F.; Aravind, G.; Zappatore; Primiceri, P. Technical Features and Functionalities of Myo Armband: An Overview on Related Literature and Advanced Applications of Myoelectric Armbands Mainly Focused on Arm Prostheses. Int. J. Smart Sens. Intell. Syst. 2018, 11, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kamen, G.; Gabriel, D. Essentials of Electromyography: Human Kinetics. Available online: https://us.humankinetics.com/products/essentials-of-electromyography (accessed on 2 August 2020).
- Farrell, T.R.; Weir, R.F. A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control. IEEE Trans. Biomed. Eng. 2008, 55, 2198–2211. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, M.; Piitulainen, H.; Visala, A. Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control 2015, 18, 334–359. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. sEMG Techniques to Detect and Predict Localised Muscle Fatigue. EMG Methods Eval. Muscle Nerve Funct. 2012. [Google Scholar] [CrossRef] [Green Version]
- Mendes Junior, J.J.A.; Freitas, M.L.B.; Siqueira, H.V.; Lazzaretti, A.E.; Pichorim, S.F.; Stevan, S.L. Feature selection and dimensionality reduction: An extensive comparison in hand gesture classification by sEMG in eight channels armband approach. Biomed. Signal Process. Control 2020, 59, 101920. [Google Scholar] [CrossRef]
- Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef]
- Phinyomark, A.; N. Khushaba, R.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, H.; Weng, C. Recognition of Electromyographic Signals Using Cascaded Kernel Learning Machine. IEEE/ASME Trans. Mechatron. 2007, 12, 253–264. [Google Scholar] [CrossRef]
- Tkach, D.; Huang, H.; Kuiken, T.A. Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 2010, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, P. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes. J. Electromyogr. Kinesiol. 2012, 22, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, P.; Mańkowski, T.; Tomczyński, J. putEMG—A Surface Electromyography Hand Gesture Recognition Dataset. Sensors 2019, 19, 3548. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liang, S.; Zhang, L.; Chai, Z.; Cao, C.; Wang, S. Gesture recognition method based on a single-channel sEMG envelope signal. J. Wirel. Commun. Network. 2018, 2018, 35. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Slutter, M.W.J. Creating a Feedback System with the Myo Armband, for Home Training for Frail Older Adults. Bachelor Thesis, University of Twente, Enschede, Netherlands, 2017. [Google Scholar]
- Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS ONE 2017, 12, e0186132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.K.; Jelfs, B.; Sui, X.; Arjunan, S.P. Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomed. Signal Process. Control 2019, 53, 101588. [Google Scholar] [CrossRef]
- Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural. Syst. Rehabil. Eng. 2011, 19, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Domain | Feature | Feature Name | Parameters |
---|---|---|---|
Time | AR4 | 4th-order Autoregressive Coefficients | - |
CEPS | Cepstral Coefficients | 4th-order | |
DASDV | Difference Absolute Standard Deviation Value | - | |
HIST | Histogram | 9 Bins | |
IEMG | Integral of EMG | - | |
LOGDEC | Log Detector | - | |
LS | L-Scale | Two Moment | |
MAV | Mean Absolute Value | - | |
MAV1 and MAV2 | Modified Mean Absolute Value | - | |
MFL | Maximum Fractal Length | - | |
MSR | Mean Square Root | - | |
MYOP | Myopulse percentage rate | Threshold = 10−2 | |
RMS | Root Mean Square | - | |
SampEn | Sample Entropy | Dimension = 2 r = 0.2 σ | |
SSC | Sign Slope Change | Slope threshold = 10−4 | |
TM3, TM4, and TM5 | Absolute Value of 3rd, 4th and 5th Moments | - | |
VAREMG | Variance | - | |
VORDER | V-Order | 3 Order | |
WAMP | Willison Amplitude | Threshold = 10−2 | |
WL | Waveform Length | - | |
ZC | Zero Crossing | Amplitude threshold = 10−2 | |
Frequency | FR | Frequency Ratio | Low frequencies = 10–50 Hz High frequencies = 51–100 Hz |
MDF | Median Frequency | - | |
MNF | Mean Frequency | - | |
MNP | Mean Power Spectrum | - | |
PKF | Peak Frequency | - | |
SM1, SM2, and SM3 | Spectral Momentum | - | |
TTP | Total Power Spectrum | - |
Feature Set | Features |
---|---|
G1 | Hudgins et al. (1993) set: MAV, WL, ZC, and SSC [54]; |
G2 | Liu et al. (2007) set: AR4 and HIST [56] |
G3 | Most repeated features in Section 2 (Related Works): MAV and AR4; |
G4 | TD4 set: MFL, MSR, WAMP, and LS [55]; |
G5 | TD9 set: LS, MFL, MSF, WAMP, ZC, RMS, IAV, DASDV, and VAREMG [55] |
G6 | Best features performed individually |
G7 | Best time-domain features in G6 |
G8 | Best frequency-domain features in G6 |
G9 | Reduced feature set from G6 with relevance in accuracy based on statistical analysis |
Classifier | Parameters |
---|---|
k-Nearest Neighbor (KNN) | 1–nearest neighbor |
Linear Discriminant Analysis (LDA) | - |
Naïve Bayes (NB) | Normal distribution |
Multi-Layer Perceptron (MLP) | 30 neurons in hidden layer |
Quadratic Discriminant Analysis (QDA) | - |
Random Forest (RF) | 30 trees |
Extreme Learning Machine (ELM) | 1000 neurons in the hidden layer |
Support Vector Machine with Linear Discrimination (SVMLin) | C = 100 |
Support Vector Machine with Radial Basis Function Discrimination (SVMRBF) | C = 10 and Gaussian size = 1 |
Accuracy (%) | ||||||
---|---|---|---|---|---|---|
Window Length | G4 | |||||
KNN Overlap Rate | RF Overlap Rate | SVMRBF Overlap Rate | ||||
25 | 12.5 | 25 | 12.5 | 25 | 12.5 | |
1.25 s | 92.5 ab | 98 ab | 89.3 ab | 94.9 ab | 94.2 ab | 98.3 abc |
1.5 s | 95.1 ab | 99 abc | 93.8 abc | 97.5 abc | 96.4 abc | 99.1 abcd |
1.75 s | 97.8 abc | 99.7 bcd | 97.2 cd | 99 bcd | 98 cd | 99.5 abcd |
2 s | 99.8 abceF | 99.9 cdeF | 98.9 cde | 99.6 de | 99.3 cde | 99.8 bcde |
2.25 s | 99.9 ceF | 99.9 cdeF | 99.9 deF | 99.9 deF | 99.8 de | 99.9 de |
G9 | ||||||
1.25 s | 93.2 ab | 97 ab | 90.3 ab | 95.3 ab | 93.8 ab | 97.7 ab |
1.5 s | 95.8 abc | 98.8 abcd | 94.3 abc | 97.7 abcd | 96.3 abc | 99 abc |
1.75 s | 97.5 bdc | 99.4 bcde | 96.9 bcd | 98.7 bcde | 97.9 bcd | 99.4 bcd |
2 s | 98.8 cde | 99.5 bcde | 99.2 cde | 98.2 bcde | 98.9 cde | 99.6 cde |
2.25 s | 99.9 deF | 99.9 cdeF | 99.9 deF | 99.9 cdeF | 99.7 de | 99.9 de |
Work | SLR | Signals/ Subjects | sEMG Channels and/Other Sensors | Window Length/ Overlapping | Features | Classifier | Results |
---|---|---|---|---|---|---|---|
[25] | ASL | 9/- | 2 | 512 samples/Y | IAV, ZC, DAMV, AR, CEPS, Mean frequency | DA | 97% |
[10] | GSL | 60/3 | 5/Accelerometer | -/- | Sample Entropy | DA | 93% |
[24] | CSL | 72/2 | 5/Accelerometer | 100 ms/N | MAV, AR | DT, HMM | 98% |
[29] | CSL | 223/5 | 4/Accelerometer | 64 points/Y | MAV, AR | DTW, HMM | 92% to 96% |
[28] | ASL | 40/4 | 4/Accelerometer Gyroscope Magnetometer | 128 ms/N | MAV, AR, HIST, RMS, Reflection Coefficients, VAREMG, WAMP, MDF, Modify MNF | NB, KNN, DT, SVM | 96% |
[27] | CSL | 121/5 | 4/Accelerometer | 128 ms/Y | MAV, AR, Mean, VAREMG, Linear Prediction Coefficients | RF, HMM | 98% |
[11] | ASL | 80/4 | 4/ Accelerometer | 128 ms/N | MAV, AR, HIST, RMS, Reflection Coefficients, VAREMG, WAMP, MDF, Modify MNF | NB, KNN, DT, SVM | 96% |
[38] | Libras | 20/- | 8 (Myo armband) | -/- | Mean | SVM | 41% |
[26] | KSL | 30/6 | 8 (Myo armband)/ Accelerometer Gyroscope Magnetometer | 200 ms/N | Raw signal | CNN | 98% |
[23] | CSL | 18/8 | 5/ Accelerometer | 176 ms/Y 50-350 ms/Y | MAV, ZC, SSC, and WL | LDA | 91% |
[39] | Libras | 20/1 | 8 (Myo armband) | 750 ms/N | IEMG, MAV, RMS, LOGDEC, ZC, SSC, MNF, PKF, MNP, SM0, SM1 | MLP | 81% |
This Work | Libras | 26/12 | 8 (Myo armband) | Window Length: 0.25 to 2.25 s/ Without overlap, 50%, 25%, and 12.5% | AR4, CEPS, DASDV, HIST, IEMG, LOGDEC, LS, MAV, MAV1, MAV2, MFL, MSR, MYOP, RMS, SampEn, SSC, TM3, TM4, TM5, VAREMG, VORDER, WAMP, WL, ZC, FR, MDF, MNF, PKF, SM1, SM2, SM3, TTP | KNN, NB, LDA, QDA, RF, ELM, MLP, SVMLin, SVMRBF | 99% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes Junior, J.J.A.; Freitas, M.L.B.; Campos, D.P.; Farinelli, F.A.; Stevan, S.L., Jr.; Pichorim, S.F. Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet. Sensors 2020, 20, 4359. https://doi.org/10.3390/s20164359
Mendes Junior JJA, Freitas MLB, Campos DP, Farinelli FA, Stevan SL Jr., Pichorim SF. Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet. Sensors. 2020; 20(16):4359. https://doi.org/10.3390/s20164359
Chicago/Turabian StyleMendes Junior, José Jair Alves, Melissa La Banca Freitas, Daniel Prado Campos, Felipe Adalberto Farinelli, Sergio Luiz Stevan, Jr., and Sérgio Francisco Pichorim. 2020. "Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet" Sensors 20, no. 16: 4359. https://doi.org/10.3390/s20164359
APA StyleMendes Junior, J. J. A., Freitas, M. L. B., Campos, D. P., Farinelli, F. A., Stevan, S. L., Jr., & Pichorim, S. F. (2020). Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet. Sensors, 20(16), 4359. https://doi.org/10.3390/s20164359