The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Inert and Enzymatic Membranes
2.3. Preparation of Electrodes and Biosensor
2.4. Electrochemical Measurements; Determination of Urea in Urine, Blood, and Dialysate
3. Results and Discussion
3.1. Principles of the TRGO-Based Urea Biosensor and Summarized TRGO Characteristics
3.1.1. Functioning of the TRGO-Based Electrode
3.1.2. Calibration Characteristics of the TRGO-Based Urea Biosensor
3.1.3. Accuracy of the TRGO-Based Urea Biosensor Acting in Urine, Blood, or Dialysate
3.1.4. Operational and Storage Stability of the TRGO-Based Urea Biosensor
3.2. Urea Assessments Using TRGO-Based Biosensor in Spent Dialysate or Blood
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Singh, M.; Erma, N.; Garg, A.K.; Edhu, N. Urea biosensors. Sens. Actuators B-Chem. 2008, 134, 345–351. [Google Scholar] [CrossRef]
- Higgins, C. Urea and the Clinical Value of Measuring Blood Urea Concen-Tration. 2006. Available online: https://acutecaretesting.org/en/articles/urea-and-the-clinical-value-of-measuring-blood-urea-concentration (accessed on 25 September 2019).
- Soni, A.; Surana, R.K.; Jha, S.K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B-Chem. 2018, 269, 346–353. [Google Scholar] [CrossRef]
- Leonard, J.V.; Morris, A.A.M. Urea cycle disorders. Semin. Neonatol. 2002, 7, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Hong, W.; Basharat, Z.; Wang, Q.; Pan, J.; Zhou, M. Blood urea nitrogen as a predictor of severe acute pancreatitis based on the revised atlanta criteria: Timing of measurement and cutoff points. Can. J. Gastroenterol. Hepatol. 2017, 2017, 9592831. [Google Scholar] [CrossRef]
- Dhawan, G.; Sumana, G.; Malhotra, B.D. Recent developments in urea biosensors. Biochem. Eng. J. 2009, 44, 42–52. [Google Scholar] [CrossRef]
- Pundir, C.S.; Jakhar, S.; Narwal, V. Determination of urea with special emphasis on biosensors: A review. Biosens. Bioelectron. 2019, 123, 36–50. [Google Scholar] [CrossRef]
- Wang, K.H.; Hsieh, J.C.; Chen, C.C.; Zan, H.W.; Meng, K.F.; Kuo, S.T.; Nguyễn, M.T.N. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens. Bioelectron. 2019, 132, 352–359. [Google Scholar] [CrossRef]
- Zhybaka, M.; Beni, V.; Vagin, M.Y.; Dempsey, E.; Turner, A.P.F.; Korpan, Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron. 2016, 77, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Kirstein, D.; Kirstein, L.; Scheller, F. Enzyme electrode for urea with amperometric indication: Part I-basic principle. Biosensors 1985, 1, 117–130. [Google Scholar] [CrossRef]
- Stred’ansky, M.; Pizzarello, A.; Stred’anska, S.; Miertus, S. Amperometric pH-sensing biosensors for urea, penicillin, and oxaloacetate. Anal. Chim. Acta 2000, 415, 151–157. [Google Scholar] [CrossRef]
- Yang, J.K.; Ha, K.S.; Baek, H.S.; Lee, S.S.; Seo, M.L. Amperometric determination of urea using enzyme-modified carbon paste electrode. Bull. Korean Chem. Soc. 2004, 25, 1499–1502. [Google Scholar]
- Vostiar, I.; Tkac, J.; Sturdik, E.; Gemeiner, P. Amperometric urea biosensor based on urease and electropolymerized toluidine blue as a pH-sensitive redox probe. Bioelectrochemistry 2002, 56, 113–115. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V.; Musina, A. Amperometric urea biosensor based on platinum electrode modified with a nanocomposite film. Surf. Interface Anal. 2012, 44, 895–898. [Google Scholar] [CrossRef]
- Das, G.; Yoon, H.H. Amperometric urea biosensor based on sulfonated graphene/polyaniline nanocomposite. Int. J. Nanomed. 2015, 10, 55–66. [Google Scholar]
- Wang, X.; Watanabe, H.; Sekioka, N.; Hamana, H.; Uchiyama, S. Amperometric urea biosensor using aminated glassy carbon electrode covered with urease immobilized carbon sheet, based on the electrode oxidation of carbamic acid. Electroanalysis 2007, 19, 1300–1306. [Google Scholar] [CrossRef]
- Marchenko, S.V.; Kucherenko, I.S.; Hereshko, A.N.; Panasiuk, I.V.; Soldatkin, O.O.; El’skaya, A.V.; Soldatkin, A.P. Application of potentiometric biosensor based on recombinant ureasefor urea determination in blood serum and hemodialyzate. Sens. Actuators B-Chem. 2015, 207, 981–986. [Google Scholar] [CrossRef]
- Liang, B.; Fang, L.; Yang, G.; Hu, Y.; Guo, X.; Ye, X. Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens. Bioelectron. 2013, 43, 131–136. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- de Poulpiquet, A.; Ciaccafava, A.; Lojou, E. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim. Acta 2014, 126, 104–114. [Google Scholar] [CrossRef]
- Zheng, D.; Vashist, S.K.; Dykas, M.M.; Saha, S.; Al Rubeaan, K.; Lam, E.; Luong, J.H.T.; Sheu, F. Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Materials 2013, 6, 1011–1027. [Google Scholar] [PubMed] [Green Version]
- Šakinytė, I.; Barkauskas, J.; Gaidukevič, J.; Razumienė, J. Thermally reduced graphene oxide: The study and use for reagentless amperometric D-fructose biosensors. Talanta 2015, 144, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Contescu, A.; Vass, M.; Contescu, C.; Putyera, K.; Schwarz, J.A. Acid buffering capacity of basic carbons revealed by their continuous pK distribution. Carbon 1998, 36, 247–258. [Google Scholar] [CrossRef]
- Ratautas, D.; Dagys, M. Nanocatalysts containing direct electron transfer-capable oxidoreductases: Recent advances and applications. Catalysts 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Razumienė, J.; Sakinyte, I.; Kochane, T.; Maciulyte, S.; Straksys, A.; Budriene, S.; Barkauskas, J. Carbon electrode based urea sensor– modification of graphite and new polymeric carriers for enzyme immobilization. In Proceedings of the 6th International Joint Conference on Biomedical Engineering Systems and Technologies, Biodevices, Spain, 11–14 February 2013; pp. 197–201, ISBN 978-989-8565-34-1. [Google Scholar]
- Maciulyte, S.; Kochane, T.; Budriene, S. Microencapsulation of maltogenic α-amylase in poly(urethane–urea). J. Microencapsul. 2015, 32, 547–558. [Google Scholar]
- Ivanauskas, F.; Kaunietis, I.; Laurinavičius, V.; Razumienė, J.; Šimkus, R. Apparent Michaelis constant of the enzyme modified porous electrode. J. Math. Chem. 2008, 43, 1516–1526. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Carter, E.L.; Flugga, N.; Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Interplay of metal ions and urease. Metallomics 2009, 1, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Laurinavicius, V.; Razumiene, J.; Gureviciene, V. Bio-electrochemical conversion of urea on carbon black electrode and application. IEEE Sens. J. 2013, 13, 2208–2213. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Nambiar, S.; Yeow, J.T.W.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Polymers and organic materials-based pH sensors for healthcare applications. Prog. Mater. Sci. 2018, 96, 174–216. [Google Scholar] [CrossRef]
- Pizzariello, A.; Stredanský, M.; Stredanská, S.; Miertuš, S. Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 2001, 54, 763–772. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Gayda, G.; Vus, B.; Koval’chuk, Y.; Gonchar, M. Bi-enzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosens. Bioelectron. 2012, 37, 46–52. [Google Scholar] [PubMed]
- Sigma-Aldrich Product Information Sheet, Urease, Type IX from Canavalia ensiformis (Jack Bean). Available online: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/2/u4002dat.pdf (accessed on 25 September 2019).
- Dervisevic, E.; Dervisevic, M.; Nyangwebah, J.N.; Şenel, M. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens. Actuators B-Chem. 2017, 246, 920–926. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Şenel, M. Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sens. Actuators B-Chem. 2018, 254, 93–101. [Google Scholar] [CrossRef]
- Korkut, S.; Uzuncar, S.; Kilic, M.S.; Hazer, B. Electrochemical determination of urea using a gold nanoparticle-copolymer coated-enzyme modified gold electrode. Instrum. Sci. Technol. 2019, 47, 1–18. [Google Scholar] [CrossRef]
- Muthusankar, E.; Ponnusamy, V.K.; Ragupathy, D. Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth. Met. 2019, 254, 134–140. [Google Scholar]
- Singh, A.K.; Singh, M.; Verma, N. Electrochemical preparation of Fe3O4/MWCNT-polyaniline nanocomposite film for development of urea biosensor and its application in milk sample. J. Food Meas. Charact. 2019, 14, 163–175. [Google Scholar]
- Hosseinian, M.; Najafpour, G.; Rahimpour, A. Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode. Turk. J. Chem. 2019, 43, 1063–1074. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.P.; Chen, P. The study of urea nitrogen biosensor based on the disposable screen-printed carbon electrode. Int. J. Electrochem. Sci. 2015, 10, 7794–7802. [Google Scholar]
- Vashist, S.K. Point-of-care diagnostics: Recent advances and trends. Biosensors 2017, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.S.; Hyon, G.D.; Yoon, H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016, 77, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Eloot, S.; van Biesen, W.; Dhondt, A.; van de Wynkele, H.; Glorieux, G.; Verdonck, P.; Vanholder, R. Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int. 2008, 73, 765–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daugirdas, J.T.; Blake, P.G.; Ing, T.S. Handbook of Dialysis, 5th ed.; Wolters Kluwer: New York, NY, USA, 2015. [Google Scholar]
- Vanholder, R.; van Biesen, W.; Lameire, N. A swan song for Kt/Vurea. Semin. Dialysis 2019, 32, 424–437. [Google Scholar]
- Razumiene, J.; Sakinyte, I.; Gureviciene, V.; Petrauskas, K. Amperometric urea sensor enzyme immobilization into adjustable membrane and mathematical characterization of the biosensor. In Proceedings of the 8th International Conference on Biomedical Electronics and Devices, Lisbon, Portugal, 12–15 January 2015; pp. 144–149. [Google Scholar]
- Kawanishi, H. A perspective on the current status of home hemodialysis. Contrib. Nephrol. 2018, 196, 171–177. [Google Scholar] [PubMed]
Carbonaceous Materials | Oxygen, w% | SBET 1, m2 g−1 | I(D)/I(G) 2 |
---|---|---|---|
Graphite | 0.5 | 12.8 ± 0.1 | 0.4 |
GO | 49.8 | 11.1 ± 0.2 | 1.25 |
TRGO1 | 10.9 | 316.8 ± 1.1 | 1.3 |
TRGO2 | 9.7 | 689.5 ± 11.3 | 1.4 |
TRGO3 | 9.5 | 503.0 ± 15.7 | 1.2 |
Biosensor | Sensitivity, µA mM−1 cm−2 | LR a, mM | RT b, s | LOD, mM | RSD c, % | E d, V | Storage Stability | References |
---|---|---|---|---|---|---|---|---|
TRGO/urease | 2.3 | 0.2–12 | 25 | 0.02 | 2 | 0.2 vs. Ag/AgCl | Retained 100% in 7 month | This work |
Ferrocene-poly(amidoamine) dendrimers/multi walled carbon nanotubes/urease (Fc-PAMAM (G3)/MWCNT) | 1.085 | 0.2–1.8 | 3 | 0.05 | 1.95–2.54 | 0.35 vs. Ag/AgCl | Retained 62% in 3 days | [37] |
Self-assembled polyamidoamine grafted multiwalled carbon nanotube (MWCNT-PAMAM) dendrimers/urease | 6.6 nA mM−1 | 1–20 | 3 | 0.4 | 2.79–3.87 | 0.45 vs. Ag/AgCl | Retained 83% in 15 days | [38] |
Poly(propylene-co-imidazole)/gold nanoparticles/urease | - | 0.1–30 | - | 0.036 | 2.43 | 0.2 vs. Ag/AgCl | Retained 97% in 75 days | [39] |
Indium tin oxide (ITO) coated Polydiphenylamine (PDPA)/Phosphotungstic acid (PTA)/Graphene (Gra) hybrid nanocomposites modified electrode (ITO/PDPA/PTA/Gra-ME)/urease | 1.085 μA μM−1 cm−2 | 0.001–0.013 | 5 | 0.0001 | 0.25 vs. Ag/AgCl | - | [40] | |
Graphene/polyaniline (PANI)/urease | 0.85 | 0.12–12.3 | 5 | 0.05 | - | −0.2 + 0.4 vs. Ag/AgCl | Retained 81% after 15 days | [16] |
Fe3O4/MWCNT/PANI/urease | - | 1.0–25.0 | ˂ 3 | 0.067 | - | 0.25 vs. Ag/AgCl | Retained 70% after 60 days | [41] |
Macroporous polypyrrole/urease | 0.0432 mA mM −1 | 0.5–10.82 | 5 | 0.208 | 4.3 | 0.3 vs. Ag/AgCl | Retained 93% after month | [42] |
Screen-printed carbon electrode/potassium ferrocyanide/urease/glutamate dehydrogenase/NADH | - | 0.05–40 | 50 | 0.012 | - | 0.20 vs. carbon electrode | Retained 84.2% after 6 months | [43] |
Blood | Urine | ||||||
---|---|---|---|---|---|---|---|
Urea Added, mM | Urea Found, mM | Recovery, % | RSD, % | Urea Added, mM | Urea Found, mM | Recovery, % | RSD, % |
0 | 0.20 | 1.6 | 0 | 0.49 | 1.3 | ||
0.3 | 0.29 | 96.4 | 1.3 | 0.25 | 0.26 | 102 | 1.7 |
0.6 | 0.57 | 95.3 | 1.0 | 0.5 | 0.52 | 104 | 1.4 |
1.2 | 1.11 | 92.7 | 1.7 | 1 | 1.01 | 101 | 1.4 |
1.8 | 1.69 | 94.0 | 2.5 | 1.25 | 1.26 | 101 | 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razumiene, J.; Gureviciene, V.; Sakinyte, I.; Rimsevicius, L.; Laurinavicius, V. The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies. Sensors 2020, 20, 4496. https://doi.org/10.3390/s20164496
Razumiene J, Gureviciene V, Sakinyte I, Rimsevicius L, Laurinavicius V. The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies. Sensors. 2020; 20(16):4496. https://doi.org/10.3390/s20164496
Chicago/Turabian StyleRazumiene, Julija, Vidute Gureviciene, Ieva Sakinyte, Laurynas Rimsevicius, and Valdas Laurinavicius. 2020. "The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies" Sensors 20, no. 16: 4496. https://doi.org/10.3390/s20164496
APA StyleRazumiene, J., Gureviciene, V., Sakinyte, I., Rimsevicius, L., & Laurinavicius, V. (2020). The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies. Sensors, 20(16), 4496. https://doi.org/10.3390/s20164496