Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armstrong, T.W.; Chandler, K.C.; Barish, J. Calculations of neutron flux spectra induced in the Earth’s atmosphere by galactic cosmic rays. J. Geophys. Res. 1973, 78, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Niita, K. Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere. Radiat. Res. 2006, 166, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.S.; Goldhagen, P.; Rodbell, K.P.; Zabel, T.H.; Tang, H.H.K.; Clem, J.M.; Bailey, P. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci. 2004, 51, 3427–3434. [Google Scholar] [CrossRef]
- Leray, J.L. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems. Microelectron. Reliab. 2007, 47, 1827–1835. [Google Scholar]
- Ferlet-Cavrois, V.; Massengill, L.W.; Gouker, P. Single Event Transients in Digital CMOS—A Review. IEEE Trans. Nucl. Sci. 2013, 60, 1767–1790. [Google Scholar] [CrossRef]
- Nowicki, S.F.; Wender, S.A.; Mocko, M. The Los Alamos Neutron Science Center Spallation Neutron Sources. Phys. Proc. 2017, 90, 374–380. [Google Scholar] [CrossRef]
- Blackmore, E.W.; Dodd, P.E.; Shaneyfelt, M.R. Improved capabilities for proton and neutron irradiations at TRIUMF. In Proceedings of the 2003 IEEE Radiation Effects Data Workshop, Monterey, CA, USA, 25 July 2003; pp. 149–155. [Google Scholar]
- Bélanger-Champagne, C.; Blackmore, E.; Lindsay, C.; Hoehr, C.; Trinczek, M. Simulation and Measurements of Collimator Effects in Proton and Neutron Radiation Testing for Single-Event Effects. IEEE Trans. Nucl. Sci. 2020, 67, 161–168. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Optics 2018, 20, 093001. [Google Scholar] [CrossRef] [Green Version]
- JEDEC Standard. Available online: https://www.jedec.org/standards-documents/docs/jesd-89a (accessed on 10 June 2020).
- Di Francesca, D.; Li Vecchi, G.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Robin, T.; Kadi, Y.; Brugger, M. Qualification and Calibration of Single Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. J. Lightw. Techn. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Di Francesca, D.; Li Vecchi, G.; Girard, S.; Alessi, A.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Kadi, Y.; Brugger, M. Radiation Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Trans. Nucl. Sci. 2018, 65, 126–131. [Google Scholar] [CrossRef]
- Morana, A.; Girard, S.; Cannas, M.; Marin, E.; Marcandella, C.; Paillet, P.; Périsse, J.; Macé, J.-R.; Boscaino, R.; Nacir, B.; et al. Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Opt. Mat. Express 2015, 5, 898–911. [Google Scholar] [CrossRef]
- Benabdesselam, M.; Mady, F.; Girard, S.; Mebrouk, Y.; Duchez, J.B.; Gaillardin, M.; Paillet, P. Performance of Ge-doped Optical Fiber as a Thermoluminescent. IEEE Trans. Nucl. Sci. 2013, 60, 4251–4256. [Google Scholar] [CrossRef]
- Di Francesca, D.; Infantino, A.; Vecchi, G.; Girard, S.; Alessi, A.; Kadi, Y.; Brugger, M. Dosimetry Mapping of Mixed Field Radiation Environment through Combined Distributed Optical Fiber Sensing and FLUKA Simulation. IEEE Trans. Nucl. Sci. 2019, 66, 299–305. [Google Scholar] [CrossRef]
- Di Francesca, D.; Toccafondo, I.; Li Vecchi, G.; Calderini, S.; Girard, S.; Alessi, A.; Ferraro, R.; Danzeca, S.; Kadi, Y.; Brugger, M. Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Trans. Nucl. Sci. 2018, 65, 1639–1644. [Google Scholar] [CrossRef]
- Li Vecchi, G.; Di Francesca, D.; Ferraro, R.; Danzeca, S.; Stein, O.; Kadi, Y.; Brugger, M.; Girard, S. Distributed Optical Fiber Radiation Sensing at CERN. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 2039–2042. [Google Scholar]
- Robinson, M.T. Basic physics of radiation damage production. J. Nucl. Mat. 1994, 216, 1–28. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 1983, 54, 3743. [Google Scholar] [CrossRef]
- Virmontois, C.; Goiffon, V.; Magnan, P.; Saint-Pé, O.; Girard, S.; Petit, S.; Rolland, G.; Bardoux, A. Total ionizing dose versus displacement damage dose induced dark current random telegraph signals in CMOS image sensors. IEEE Trans. Nucl. Sci. 2011, 58, 3085–3094. [Google Scholar] [CrossRef] [Green Version]
- Pfotzer, G. History of the use of Balloons in Scientific Experiments. Space Sci. Rev. 1972, 13, 199–242. [Google Scholar] [CrossRef]
- Campanella, C.; Morana, A.; Girard, S.; Guttilla, A.; Mady, F.; Benabdesselam, M.; Desjonqueres, H.; Monsanglant-Louvet, C.; Balland, C.; Marin, E.; et al. Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE Trans. Nucl. Sci. 2020, 67, 1643–1649. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Marcandella, C.; Boukenter, A.; Quesnard, S.; Authier, N. Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. J. Non-Cryst. Sol. 2011, 357, 1871–1874. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Ouerdane, Y.; Kadi, Y.; Brugger, M.; Boukenter, A. Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous-Doped Optical Fibers. Phys. Stat. Solidi A 2019, 216, 1800553. [Google Scholar] [CrossRef]
- Girard, S.; Baggio, J.; Bisutti, J. 14-MeV Neutron, gamma-ray, and Pulsed X-Ray Radiation-Induced Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2006, 53, 3750–3757. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girard, S.; Morana, A.; Hoehr, C.; Trinczek, M.; Vidalot, J.; Paillet, P.; Bélanger-Champagne, C.; Mekki, J.; Balcon, N.; Li Vecchi, G.; et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors 2020, 20, 4510. https://doi.org/10.3390/s20164510
Girard S, Morana A, Hoehr C, Trinczek M, Vidalot J, Paillet P, Bélanger-Champagne C, Mekki J, Balcon N, Li Vecchi G, et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors. 2020; 20(16):4510. https://doi.org/10.3390/s20164510
Chicago/Turabian StyleGirard, Sylvain, Adriana Morana, Cornelia Hoehr, Michael Trinczek, Jeoffray Vidalot, Philippe Paillet, Camille Bélanger-Champagne, Julien Mekki, Nicolas Balcon, Gaetano Li Vecchi, and et al. 2020. "Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing" Sensors 20, no. 16: 4510. https://doi.org/10.3390/s20164510
APA StyleGirard, S., Morana, A., Hoehr, C., Trinczek, M., Vidalot, J., Paillet, P., Bélanger-Champagne, C., Mekki, J., Balcon, N., Li Vecchi, G., Campanella, C., Lambert, D., Marin, E., Boukenter, A., Ouerdane, Y., & Blackmore, E. (2020). Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 20(16), 4510. https://doi.org/10.3390/s20164510