Development of an Ultrasonic Doppler Sensor-Based Swallowing Monitoring and Assessment System
Abstract
:1. Introduction
2. Development of Swallowing Monitoring and Assessment System
3. Experiment of Swallowing
3.1. Participants
3.2. Experiment Procedure
3.3. Analysis Methods
4. Results
4.1. Peak Amplitudes
4.2. Peak-to-Peak (PP) Time Interval
4.3. Duration
4.4. Energy
4.5. Correlations between Swallowing Signal Measures
4.6. Number of Peaks
4.7. Reproducibility of Measurement
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ekberg, O.; Hamdy, S.; Woisard, B.; Wuttge-Hannig, A.; Ortega, P. Social and psychological burden of dysphagia: Its impact on diagnosis and treatment. Dysphagia 2002, 17, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Wirth, R.; Dziewas, R.; Beck, A.M.; Clavé, P.; Hamdy, S.; Heppner, H.J.; Langmore, S.; Leischker, A.H.; Martino, R.; Pluschinski, P.; et al. Oropharyngeal dysphagia in older persons—From pathophysiology to adequate intervention: A review and summary of an international expert meeting. Clin. Interv. Aging 2016, 11, 189–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopold, N.A.; Kagel, M.A. Prepharyngeal dysphagia in Parkinson’s disease. Dysphagia 1996, 11, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Kariyasu, M.; Yamasaki, K.; Arai, Y. Evaluation of chewing and swallowing disorders among frail community-dwelling elderly individuals. J. Oral Rehabil. 2007, 34, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.K.; Brailey, K.; Priestly, D.H.; Herrington, L.R.; Weisberg, L.A.; Founda, A.L. Aspiration in patients with acute stroke. Arch. Phys. Med. Rehab. 1998, 79, 14–19. [Google Scholar] [CrossRef]
- Byeon, H.; Koh, H.W. The duration of stage transition during pharyngeal swallowing among young-elderly, and mid-elderly individuals. J. Phys. Ther. Sci. 2016, 28, 1505–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Shaker, R.; Zamir, Z.; Doods, W.J.; Hogan, W.J.; Hoffmann, R.G. Effect of age and bolus variables on the coordination of the glottis and upper esophageal sphincter. Am. J. Gastroenterol. 1993, 88, 665–669. [Google Scholar]
- Nishino, T. Interaction of swallowing and control of breathing. Nihon Kyobu Shikkan Gakkai Zasshi 1990, 28, 16–21. [Google Scholar]
- Loch, W.E.; Loch, W.E.; Reiriz, H.M.; Loch, M.H. Swallow apnea: Rhinomanometric manifestation and classification. Rhinology 1982, 4, 179–191. [Google Scholar]
- Adkins, C.; Takakura, W.; Spiegel, B.M.R.; Lu, M.; Vera-Llonch, M.; Williams, J.; Almario, C.V. Prevalence and characteristics of dysphagia based on a population-based survey. Clin. Gastroenterol. H. 2020. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Hinojosa, G.; López, D.; Juan, M.; Fabré, E.; Voss, D.S.; Calvo, M.; Marta, V.; Ribó, L.; Palomera, E.; et al. Prevalence of oropharyngeal dysphagia and impaired safety and efficacy of swallow in independently living older persons. J. Am. Geriatr. Soc. 2011, 59, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.J.; Kim, M.H.; Lim, J.; Paik, N. Oropharyngeal dysphagia in a community-based elderly cohort: The korean longitudinal study on health and aging. J. Korean Med. Sci. 2013, 28, 1534–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebihara, S.; Sekiya, H.; Miyagi, M.; Ebihara, T.; Okazaki, T. Dysphagia, dystussia, and aspiration pneumonia in elderly people. J. Thorac. Dis. 2016, 8, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, H. Management of respiratory diseases in the elderly. Nihon Kyobu Shikkan Gakkai Zasshi 1991, 29, 1227–1233. [Google Scholar] [PubMed]
- Mahesh, M. Fluoroscopy: Patient radiation exposure issues. RadioGraphics 2001, 21, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Arai, N.; Hanayama, K.; Yamazaki, T.; Tomita, T.; Tsubahara, A.; Sugamoto, K. A novel fluoroscopic method for multidimensional evaluation of swallowing function. Auris Nasus Larynx 2019, 46, 83–88. [Google Scholar] [CrossRef]
- Natarajan, R.; Stavness, I.; Pearson, W., Jr. Semi-automatic tracking of hyolaryngeal coordinates in videofluoroscopic swallowing studies. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2017, 5, 379–389. [Google Scholar] [CrossRef]
- Ryu, J.S.; Lee, J.H.; Kang, J.Y.; Kim, M.Y.; Shin, D.E.; Shin, D.A. Evaluation of dysphagia after cervical surgery using laryngeal electromyography. Dysphagia 2012, 27, 318–324. [Google Scholar] [CrossRef]
- Sia, I.; Carvajal, P.; Carnaby-Mann, G.D.; Crary, M.A. Measurement of hyoid and laryngeal displacement in video fluoroscopic swallowing studies: Variability, reliability, and measurement error. Dysphagia 2012, 27, 192–197. [Google Scholar] [CrossRef]
- Dos Santos, C.M.; Cassiani, R.A.; Dantas, R.O. Videofluoroscopic evaluation of swallowing in Chagas’ disease. Dysphagia 2011, 26, 361–365. [Google Scholar] [CrossRef]
- Ambika, R.S.; Datta, B.; Manjula, B.V.; Warawantkar, U.V.; Thomas, A.M. Fiberoptic endoscopic evaluation of swallow (FEES) in intensive care unit patients post extubation. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.; Toft, K.; McAuley, F.; King, E.; McLachlan, K.; Roe, J.W.G.; Wells, M. Feasibility and outcomes of fibreoptic endoscopic evaluation of swallowing following prophylactic swallowing rehabilitation in head and neck cancer. Clin. Otolaryngol. 2019, 44, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Umay, E.K.; Unlu, E.; Saylam, G.K.; Cakci, A.; Korkmaz, H. Evaluation of dysphagia in early stroke patients by bedside, endoscopic, and electrophysiological methods. Dysphagia 2013, 28, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Aviv, J.E.; Kaplan, S.T.; Thomson, J.E.; Spitzer, J.; Diamond, B.; Close, L.G. The safety of flexible endoscopic evaluation of swallowing with sensory testing (FEESST): An analysis of 500 consecutive evaluations. Dysphagia 2000, 15, 39–44. [Google Scholar] [CrossRef]
- Langmore, S.E.; Terpenning, M.S.; Schork, A.; Chen, Y.; Murray, J.T.; Lopatin, D.; Loesche, W.J. Predictors of aspiration pneumonia: How important is dysphagia? Dysphagia 1998, 13, 69–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leder, S.B.; Sasaki, C.T.; Burrell, M.I. Fiberoptic endoscopic evaluation of dysphagia to identify silent aspiration. Dysphagia 1998, 13, 19–21. [Google Scholar] [CrossRef]
- Kidder, T.M.; Langmore, S.E.; Martin, B.J.W. Indications and techniques of endoscopy in evaluation of cervical dysphagia: Comparison with radiographic techniques. Dysphagia 1994, 9, 256–261. [Google Scholar] [CrossRef]
- Carrau, R.L.; Murry, T.; Rebecca, J. Comprehensive Management of Swallowing Disorders; Plural Publishing: San Diego, CA, USA, 2017. [Google Scholar]
- Kuramoto, N.; Jayatilake, D.; Hidaka, K.; Suzuki, K. Smartphone-based swallowing monitoring and feedback device for mealtime assistance in nursing homes. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5781–5784. [Google Scholar]
- Jayatilake, D.; Ueno, T.; Teramoto, Y.; Nakai, E.; Hidaka, K.; Ayuzawa, S.; Eguchi, K.; Matsumura, A.; Suzuki, K. Smartphone-based real-time assessment of swallowing ability from the swallowing sound. IEEE J. Transl. Eng. Health Med. 2015, 3. [Google Scholar] [CrossRef]
- Cagliari, C.F.; Jurkiewicz, A.L.; Santos, R.S.; Marques, J.M. Doppler sonar analysis of swallowing sounds in normal pediatric individuals. Braz. J. Otorhinolar. 2009, 75, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Santamato, A.; Panza, F.; Solfrizzi, V.; Russo, A.; Frisardi, V.; Megna, M.; Ranieri, M.; Fiore, P. Acoustic analysis of swallowing sounds: A new technique for assessing dysphagia. J. Rehabil. Med. 2009, 41, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.S.; Filho, E.D.M. Sonar Doppler as an instrument of deglutition evaluation. Ann. Otol. Rhinol. Laryngol. 2006, 10, 182–191. [Google Scholar]
- Cichero, J.A.; Murdoch, B.E. Detection of swallowing sounds: Methodology revisited. Dysphagia 2002, 17, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Hamlet, S.L.; Nelson, R.J.; Patterson, R.L. Interpreting the sounds of swallowing: Fluid flow through the cricopharyngeus. Ann. Otol. Rhinol. Laryngol. 1990, 99, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Selley, W.G.; Flack, F.C.; Ellis, R.E.; Brooks, W.A. Respiratory patterns associated with swallowing: Part 1. The normal adult pattern and changes with age. Age Ageing 1989, 18, 168–172. [Google Scholar] [CrossRef] [Green Version]
- You, H. Development of a swallowing monitoring technology based on a wearable ultrasound Doppler sensor. In Proceedings of the 2018 Spring Conference of the Korean Gerontological Society, Seoul, Korea, 11 May 2018. [Google Scholar]
- Choi, Y.; Lee, H.; Oh, G.; You, H. Development of a swallowing monitoring device for early screening of dysphagia. In Proceedings of the 2017 Spring Conference of the Korean Institute of Industrial Engineers, Yeosoo, Korea, 26–28 April 2017. [Google Scholar]
- Lee, B.; Yang, G.; Hong, S.; Na, D.; You, H. Development of a swallowing screening algorithm using ultrasonic Doppler sensor and microphone. In Proceedings of the 2015 Fall Conference of the Ergonomic Society of Korea, Busan, Korea, 10–16 October 2015. [Google Scholar]
- Lee, B.; Lee, H.; Yun, M.; Seo, M.; Na, D.L.; You, H. Comparison of swallowing characteristics in normal controls and patients with dysphagia. In Proceedings of the 2013 Spring Conference of Ergonomics Society of Korea, Ulsan, Korea, 23–24 May 2013. [Google Scholar]
- Lee, B.; Lee, H.; Seo, M.; Na, D.L.; You, H. Comparison of swallowing characteristics in patients with dysphagia and normal controls. In Proceedings of the 20th IAGG World Congress of Gerontology and Geriatrics, Seoul, Korea, 23–27 June 2013. [Google Scholar]
- Lee, B.; Jung, K.; Yang, G.; Seo, M.; Na, D.L.; You, H. Development of a quantitative assessment system for dysphagia using Doppler ultrasound. In Proceedings of the 2012 Spring Conference of the Korean Institute of Industrial Engineers, Gyeongju, Korea, 10–11 May 2012. [Google Scholar]
- Lee, B. A Quantitative Assessment Methodology of Pharyngeal Swallow. Ph.D. Thesis, Pohang University of Science and Technology, Pohang, Korea, 2015. [Google Scholar]
- GjendemsjØ, A.; Selik, M.; Baraniuk, R. Energy and power. In Information and Signal Theory; Rice University: Houston, TX, USA, 2006. [Google Scholar]
- Soria, F.; Silva, R.G.; Furkim, A.M. Acoustic analysis of oropharyngeal swallowing using Sonar Doppler. Braz. J. Otorhinolar. 2015, 82. [Google Scholar] [CrossRef]
- Dong, X.; Tan, C.; Yuan, Y.; Dong, F. Oil-water two-phase flow velocity measurement with continuous wave ultrasound Doppler. Chem. Eng. Sci. 2015, 135, 155–165. [Google Scholar] [CrossRef]
- Pearson, W.G.; Hindson, D.F.; Langmore, S.E.; Zumwalt, A.C. Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, W.V.; Cassiani, R.A.; Santos, C.M.; Dantas, R.O. Effect of bolus volume and consistency on swallowing events duration in healthy subjects. J. Neurogastroenterol. 2015, 21, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Youmans, S.R.; Stierwalt, J.A. An acoustic profile of normal swallowing. Dysphagia 2005, 20, 195–209. [Google Scholar] [CrossRef]
Measure | Source | df | SS | MS | F | |
---|---|---|---|---|---|---|
1st peak amplitude (mV) | Viscosity [Vc] | 1 | 1.080 | 1.080 | 80.8 | ** |
Vc × S | 18 | 0.243 | 0.013 | |||
Volume [Vl] | 1 | 0.168 | 0.168 | 9.0 | ** | |
Vl × S | 18 | 0.339 | 0.019 | |||
Vc × Vl | 1 | 0.034 | 0.034 | 2.0 | ||
Vc × Vl × S | 18 | 0.300 | 0.017 | |||
Subject [S] | 18 | 4.257 | ||||
Total | 193 | 6.963 | 1.572 | |||
2nd peak amplitude (mV) | Viscosity [Vc] | 1 | 0.060 | 0.060 | 4.6 | * |
Vc × S | 18 | 0.233 | 0.013 | |||
Volume [Vl] | 1 | 0.012 | 0.012 | 0.9 | ||
Vl × S | 18 | 0.230 | 0.013 | |||
Vc × Vl | 1 | 0.005 | 0.005 | 0.5 | ||
Vc × Vl × S | 18 | 0.195 | 0.011 | |||
Subject [S] | 18 | 1.962 | ||||
Total | 193 | 3.247 | 0.226 | |||
peak-to-peak (PP) time interval (ms) | Viscosity [Vc] | 1 | 40,104 | 40,104 | 1.8 | |
Vc × S | 18 | 414,691 | 23,038 | |||
Volume [Vl] | 1 | 51,593 | 51,593 | 4.5 | * | |
Vl × S | 18 | 206,003 | 11,445 | |||
Vc × Vl | 1 | 14,165 | 14,165 | 1.2 | ||
Vc × Vl × S | 18 | 209,110 | 11,617 | |||
Total | 193 | 4,646,565 | 322,590 | |||
duration (ms) | Viscosity [Vc] | 1 | 7217 | 7217 | 0.2 | |
Vc × S | 18 | 539,724 | 29,985 | |||
Volume [Vl] | 1 | 112,522 | 112,522 | 5.8 | * | |
Vl × S | 18 | 352,796 | 19,600 | |||
Vc × Vl | 1 | 5872 | 5,872 | 0.5 | ||
Vc × Vl × S | 18 | 199,791 | 11,099 | |||
Subject [S] | 18 | 3,375,375 | ||||
Total | 193 | 5,267,587 | 379,218 | |||
energy | Viscosity [Vc] | 1 | 88,735 | 88,735.1 | 30.3 | ** |
Vc × S | 18 | 53,254 | 2958.6 | |||
Volume [Vl] | 1 | 8639 | 8639.5 | 21.5 | ** | |
Vl × S | 18 | 7242 | 402.3 | |||
Vc × Vl | 1 | 1513 | 1512.7 | 2.9 | ||
Vc × Vl × S | 18 | 9430 | 523.9 | |||
Subject [S] | 18 | 324,209 | ||||
Error | 118 | 38,077 | 322.7 | |||
Total | 193 | 540,733 | 121,106.4 |
Viscosity | Volume | Measures | Coefficient Of Variation | |||||
---|---|---|---|---|---|---|---|---|
≤0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | >0.5 | |||
Thin | 3 mL | 1st Peak amplitude | 33.3% | 33.3% | 16.7% | 8.3% | 8.3% | 0.0% |
2nd Peak amplitude | 20.8% | 25.0% | 16.7% | 12.5% | 16.7% | 8.3% | ||
PP time interval | 62.5% | 20.8% | 8.3% | 4.2% | 0.0% | 4.2% | ||
Duration | 79.2% | 16.7% | 0.0% | 4.2% | 0.0% | 0.0% | ||
Energy | 12.5% | 25.0% | 29.2% | 20.8% | 0.0% | 12.5% | ||
9 mL | 1st Peak amplitude | 41.7% | 33.3% | 12.5% | 4.2% | 8.3% | 0.0% | |
2nd Peak amplitude | 16.7% | 25.0% | 25.0% | 16.7% | 0.0% | 16.7% | ||
PP time interval | 54.2% | 29.2% | 8.3% | 0.0% | 0.0% | 8.3% | ||
Duration | 79.2% | 12.5% | 0.0% | 8.3% | 0.0% | 0.0% | ||
Energy | 20.8% | 25.0% | 12.5% | 29.2% | 4.2% | 8.3% | ||
Thick | 3 mL | 1st Peak amplitude | 29.2% | 45.8% | 25.0% | 0.0% | 0.0% | 0.0% |
2nd Peak amplitude | 12.5% | 33.3% | 25.0% | 0.0% | 12.5% | 16.7% | ||
PP time interval | 41.7% | 29.2% | 20.8% | 4.2% | 4.2% | 0.0% | ||
Duration | 70.8% | 12.5% | 16.7% | 0.0% | 0.0% | 0.0% | ||
Energy | 4.2% | 37.5% | 25.0% | 12.5% | 12.5% | 8.3% | ||
9 mL | 1st Peak amplitude | 20.8% | 37.5% | 29.2% | 12.5% | 0.0% | 0.0% | |
2nd Peak amplitude | 12.5% | 12.5% | 41.7% | 16.7% | 8.3% | 8.3% | ||
PP time interval | 37.5% | 50.0% | 4.2% | 8.3% | 0.0% | 0.0% | ||
Duration | 75.0% | 16.7% | 8.3% | 0.0% | 0.0% | 0.0% | ||
Energy | 8.3% | 16.7% | 20.8% | 33.3% | 16.7% | 4.2% |
Study | Sample Size (Age Range, Years) | Measurement Device | Bolus (Volume) | Duration (ms) | |
---|---|---|---|---|---|
Mean | SD | ||||
Present study | 24 (23~49) | ultrasonic Doppler | water (3 mL, 9mL) | 902.2 | 149.3 |
yogurt (3mL, 9mL) | 889.7 | 163.8 | |||
Cagliari et al. (2009) | 30 (10~15) | ultrasonic Doppler | water (2.5 mL) | male: 990.0 female: 970.0 | N/A * |
yogurt (2.5 mL) | male: 920.0 female: 810.0 | N/A | |||
Nascimento et al. (2015) | 30 (29~77) | videofluoroscopy | water + barium (5 mL, 10 mL) | 832.5 | N/A |
honey + barium (5 mL, 10 mL) | 936.0 | N/A | |||
Santamato et al. (2009) | 60 (>18) | microphone | water (10 mL) | 438.1 | 109.6 |
yogurt (10 mL) | 564.2 | 168.2 | |||
Youmans & Stierwalt (2005) | 97 (20~79) | microphone | water (5 mL) | 490.0 | 130.0 |
honey (5 mL) | 550.0 | 110.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, M.; Lee, B.; Yang, X.; Kim, J.; Kwon, D.; Lee, S.-E.; Kim, H.; Nam, S.I.; Hong, S.; et al. Development of an Ultrasonic Doppler Sensor-Based Swallowing Monitoring and Assessment System. Sensors 2020, 20, 4529. https://doi.org/10.3390/s20164529
Choi Y, Kim M, Lee B, Yang X, Kim J, Kwon D, Lee S-E, Kim H, Nam SI, Hong S, et al. Development of an Ultrasonic Doppler Sensor-Based Swallowing Monitoring and Assessment System. Sensors. 2020; 20(16):4529. https://doi.org/10.3390/s20164529
Chicago/Turabian StyleChoi, Younggeun, Minjae Kim, Baekhee Lee, Xiaopeng Yang, Jinwon Kim, Dohoon Kwon, Sang-Eok Lee, HyangHee Kim, Seok In Nam, Saewon Hong, and et al. 2020. "Development of an Ultrasonic Doppler Sensor-Based Swallowing Monitoring and Assessment System" Sensors 20, no. 16: 4529. https://doi.org/10.3390/s20164529
APA StyleChoi, Y., Kim, M., Lee, B., Yang, X., Kim, J., Kwon, D., Lee, S. -E., Kim, H., Nam, S. I., Hong, S., Yang, G., Na, D. L., & You, H. (2020). Development of an Ultrasonic Doppler Sensor-Based Swallowing Monitoring and Assessment System. Sensors, 20(16), 4529. https://doi.org/10.3390/s20164529