Temperature Sequential Data Fusion Algorithm Based on Cluster Hierarchical Sensor Networks
Abstract
:1. Introduction
1.1. Related Works
1.2. Problem Statements
2. Heat Transfer Mechanism and Fusion Frame
2.1. Heat Exchange Analysis of Oxidation Tank
2.2. Design of Fusion Framework
3. Algorithm Description
3.1. Local State Estimation
3.1.1. Traditional UKF Algorithm
3.1.2. The Improved UKF
3.1.3. Embedding of Sequential Measurement Fusion
3.2. Global State Fusion Estimation
4. Simulation and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraser, K.S.; Walton, R.H.; Wells, J.A. Processing of refractory gold ores. Miner. Eng. 1991, 4, 1029–1041. [Google Scholar] [CrossRef]
- Nan, X.Y.; Chen, F.; Kong, J. Study on temperature control of biological oxidation pretreatment process of a gold mine in alpine area. Precious Met. 2014, 000, 38–42. [Google Scholar] [CrossRef]
- Varshney, P.K. Distributed Detection and Data Fusion; Springer Science + Business Media, LLC: New York, NY, USA, 1997; pp. 1–5. [Google Scholar]
- Braca, P.; Chennakesavula, P.; Ciuonzo, D.; Coyle, E.J.; Dey, S.; Guo, X.; Hong, Y.-W.P.; Kailkhura, B.; Kar, S.; Laitrakun, S. Data Fusion in Wireless Sensor Networks: A Statistical Signal Processing Perspective; Ciuonzo, D., Rossi, P.S., Eds.; Institution of Engineering and Technology: Stevenage, UK, 2019; pp. xix:20–xix:24. [Google Scholar]
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Garcia, F.; Martin, D.; de La Escalera, A.; Armingol, J.M. Sensor Fusion Methodology for Vehicle Detection. IEEE Intell. Transp. Syst. Mag. 2017, 9, 123–133. [Google Scholar] [CrossRef]
- Pham, V.T.; Le, Q.B.; Nguyen, D.A.; Dang, N.D.; Huynh, H.T.; Tran, D.T. Multi-Sensor Data Fusion in A Real-Time Support System for On-Duty Firefighters. Sensors 2019, 19, 4746. [Google Scholar] [CrossRef] [Green Version]
- Dey, N.; Ashour, A.S.; Shi, F.; Fong, S.J.; Sherratt, R.S. Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans. Consum. Electron. 2017, 63, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Safari, S.; Shabani, F.; Simon, D. Multirate multisensor data fusion for linear systems using Kalman filters and a neural network. Aerosp. Sci. Technol. 2014, 39, 465–471. [Google Scholar] [CrossRef]
- Cappello, F.; Sabatini, R.; Ramasamy, S.; Marino, M. Particle filter based multi-sensor data fusion techniques for RPAS navigation and guidance. In Proceedings of the IEEE Second International Workshop on Metrology for Aerospace (MetroAeroSpace 2015), Benevento, Italy, 4–5 June 2015; pp. 395–400. [Google Scholar]
- Turan, M.; Almalioglu, Y.; Gilbert, H.B.; Araujo, H.; Cemgil, T.; Sitti, M. EndoSensorFusion: Particle Filtering-Based Multi-sensory Data Fusion with Switching State-Space Model for Endoscopic Capsule Robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 5393–5400. [Google Scholar]
- Zhang, X.; Sun, Y.; Qiu, Z.; Bao, J.; Zhang, Y. Adaptive Neuro-Fuzzy Fusion of Multi-Sensor Data for Monitoring a Pilot’s Workload Condition. Sensors 2019, 19, 3629. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Theagarajan, L.N.; Choi, S.; Varshney, P.K. Fusion of Correlated Decisions Using Regular Vine Copulas. IEEE Trans. Signal Process. 2019, 67, 2066–2079. [Google Scholar] [CrossRef] [Green Version]
- Ciuonzo, D.; Salvo Rossi, P. Distributed detection of a non-cooperative target via generalized locally-optimum approaches. Inf. Fusion 2017, 36, 261–274. [Google Scholar] [CrossRef]
- Li, C.; He, Y.; Wang, X.; Li, G.; Varshney, P.K. Distributed Detection of Sparse Stochastic Signals via Fusion of 1-bit Local Likelihood Ratios. IEEE Signal Process Lett. 2019, 26, 1738–1742. [Google Scholar] [CrossRef]
- Cheng, X.; Ciuonzo, D.; Rossi, P.S. Multibit Decentralized Detection Through Fusing Smart and Dumb Sensors Based on Rao Test. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1391–1405. [Google Scholar] [CrossRef]
- Salvo Rossi, P.; Ciuonzo, D.; Ekman, T. HMM-Based Decision Fusion in Wireless Sensor Networks With Noncoherent Multiple Access. IEEE Commun. Lett. 2015, 19, 871–874. [Google Scholar] [CrossRef]
- Niu, R.; Varshney, P.K. Performance Analysis of Distributed Detection in a Random Sensor Field. IEEE Trans. Signal Process. 2008, 56, 339–349. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Romano, G.; Salvo Rossi, P. Channel-Aware Decision Fusion in Distributed MIMO Wireless Sensor Networks: Decode-and-Fuse vs. Decode-then-Fuse. IEEE Trans. Wireless Commun. 2012, 11, 2976–2985. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Z.; Zheng, B.; Li, Y. Multi-Sensor Data Fusion Algorithm Based on Trust Degree and Improved Genetics. Sensors 2019, 19, 2139. [Google Scholar] [CrossRef] [Green Version]
- Zha, H.; Wei, A.; Fang, Y. Application of data fusion in water quality monitoring. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 3395–3399. [Google Scholar]
- Ji, W.; Adamchuk, V.I.; Chen, S.; Mat Su, A.S.; Ismail, A.; Gan, Q.; Shi, Z.; Biswas, A. Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma 2019, 341, 111–128. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Nikoo, M.R. A fusion-based methodology for meteorological drought estimation using remote sensing data. Remote Sens. Environ. 2018, 211, 229–247. [Google Scholar] [CrossRef]
- Lee, S.; Lee, I.; Yeo, U.; Kim, R.; Kim, J. Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosyst. Eng. 2019, 188, 190–206. [Google Scholar] [CrossRef]
- Poma, N.; Vivaldi, F.; Bonini, A.; Carbonaro, N.; Di Rienzo, F.; Melai, B.; Kirchhain, A.; Salvo, P.; Tognetti, A.; Di Francesco, F. Remote monitoring of seawater temperature and pH by low cost sensors. Microchem. J. 2019, 148, 248–252. [Google Scholar] [CrossRef]
- Runkle, J.D.; Cui, C.; Fuhrmann, C.; Stevens, S.; Del Pinal, J.; Sugg, M.M. Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern US. Environ. Int. 2019, 129, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xue, F.; Meng, F. Molten pool temperature measurement based on multi-sensor data fusion. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 709–712. [Google Scholar]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A decision support system based on multisensor data fusion for sustainable greenhouse management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Li, N.; Gao, B.P. Study on temperature field in biological oxidation tank in high altitude mining area. Nonferrous Met. (Smelting Part) 2019, 7, 58–63. [Google Scholar] [CrossRef]
- Zhang, Z.; Nan, X.; Wang, C. Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network. Sensors 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Shin, H.-S.; Xu, S.; Tsourdos, A. Distributed estimation over a low-cost sensor network: A Review of state-of-the-art. Inf. Fusion 2020, 54, 21–43. [Google Scholar] [CrossRef]
- Chang, G. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. J. Geod. 2014, 88, 391–401. [Google Scholar] [CrossRef]
- Wald, A. Sequential Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1948; pp. 170–171. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J. A non-divergent estimation algorithm in the presence of unknown correlations. In Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA, 6 June 1997; pp. 2369–2373. [Google Scholar] [CrossRef]
- Gao, B.P.; Nan, X. Research and application of biological oxidation pretreatment process control system. Gold 2011, 32, 50–52. [Google Scholar] [CrossRef]
Notation | Description | Notation | Description |
---|---|---|---|
heat conduction coefficient | error covariance of the system | ||
temperature of the serpentine heat exchanger | a scaling parameter | ||
temperature of the pulp | filter gain | ||
heat transfer coefficient | sampling points | ||
density | one-step predicted value | ||
specific heat capacity | a new set of sigma points | ||
heat source (heat exchanger) | measurement update value | ||
temperature white noise | error covariance of the measurement | ||
heat loss per unit area per unit time | the innovation vector of the th local filter | ||
white noise at the heat source | obeys chi-square distribution with degree of freedom | ||
observation noise of the th sensor | a given significance level | ||
system state noise covariance matrix | chi-square distribution | ||
observation noise covariance matrix | fading memory matrix | ||
unbiased estimation of the state | sequence of sensor sampling data in each cluster | ||
empirical correction matrix | temperature measurement threshold | ||
final global fusion result | weight assigned to the covariance of the estimation error | ||
, | fusion weight | state estimation errors of each sensor based on time series | |
unit matrix corresponding to the appropriate dimension | degree of redundancy estimation between sensors is parameterized |
Type | Running Time (s) |
---|---|
SOFE | 1.972425 |
BF | 4.765901 |
Type | Performance Index | ||
---|---|---|---|
(Root-Mean-Square Error) RMSE (°C) | (Mean Absolute Error) MAE (°C) | (Mean Relative Error) MRE (%) | |
SOFE (1#tank) | 0.0953 | 0.0168 | 0.04 |
SOFE (2#tank) | 0.0994 | 0.0222 | 0.05 |
SOFE (3#tank) | 0.0990 | 0.0194 | 0.05 |
BF | 0.0991 | 0.0224 | 0.05 |
SICI-GSFE | 0.1408 | 0.0399 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Nan, X.; Jin, W. Temperature Sequential Data Fusion Algorithm Based on Cluster Hierarchical Sensor Networks. Sensors 2020, 20, 4533. https://doi.org/10.3390/s20164533
Yang T, Nan X, Jin W. Temperature Sequential Data Fusion Algorithm Based on Cluster Hierarchical Sensor Networks. Sensors. 2020; 20(16):4533. https://doi.org/10.3390/s20164533
Chicago/Turabian StyleYang, Tianwei, Xinyuan Nan, and Weixu Jin. 2020. "Temperature Sequential Data Fusion Algorithm Based on Cluster Hierarchical Sensor Networks" Sensors 20, no. 16: 4533. https://doi.org/10.3390/s20164533
APA StyleYang, T., Nan, X., & Jin, W. (2020). Temperature Sequential Data Fusion Algorithm Based on Cluster Hierarchical Sensor Networks. Sensors, 20(16), 4533. https://doi.org/10.3390/s20164533