Activity Energy Expenditure Predicts Clinical Average Levels of Physical Activity in Older Population: Results from Salus in Apulia Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Accelerometer Variables
- Sleep or SIB (the periods of time during which the z-angle does not change by more than 5 degrees for at least 5 min);
- Other inactivity (threshold under 30 mg);
- Light (ENMO threshold over 30 mg);
- Moderate (ENMO threshold over 100 mg);
- Vigorous (ENMO threshold over 400 mg).
2.3. Assessment of Physical Activity
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Crawford, A.; Hollingsworth, H.H.; Morgan, K.; Gray, D.B. People with mobility impairments: Physical activity and quality of participation. Disabil. Health J. 2008, 1, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, D.D.; Song, J.; Arnston, E.K.; Semanik, P.A.; Lee, J.; Chang, R.W.; Hootman, J.M. Sedentary time in US older adults associated with disability in activities of daily living independent of physical activity. J. Phys. Act. Health 2015, 12, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, M.; Lindgren, A.; De Munter, J.; Rasmussen, F.; Ahlström, G. Impacts of mobility disability and high and increasing body mass index on health-related quality of life and participation in society: A population-based cohort study from Sweden. BMC Public Health 2014, 14, 381. [Google Scholar] [CrossRef] [Green Version]
- Lear, S.A.; Hu, W.; Rangarajan, S.; Gasevic, D.; Leong, D.; Iqbal, R.; Casanova, A.; Swaminathan, S.; Anjana, R.M.; Kumar, R.; et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: The PURE study. Lancet 2017, 390, 2643–2654. [Google Scholar] [CrossRef]
- Diederichs, C.; Berger, K.; Bartels, D.B. The measurement of multiple chronic diseases--a systematic review on existing multimorbidity indices. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Quiñones, A.R.; Markwardt, S.; Botoseneanu, A. Multimorbidity combinations and disability in older adults. J. Gerontol. Ser. A: Biomed. Sci. Med Sci. 2016, 71, 823–830. [Google Scholar]
- Others World Health Organization Global recommendations on physical activity for health; World Health Organization: Geneva, Switzerland, 2010.
- Steeves, J.A.; Shiroma, E.J.; Conger, S.A.; Van Domelen, D.; Harris, T.B. Physical activity patterns and multimorbidity burden of older adults with different levels of functional status: NHANES 2003–2006. Disabil. Health J. 2019, 12, 495–502. [Google Scholar] [CrossRef]
- Baker, J.; Meisner, B.A.; Logan, A.J.; Kungl, A.-M.; Weir, P. Physical activity and successful aging in Canadian older adults. J. Aging Phys. Act. 2009, 17, 223–235. [Google Scholar] [CrossRef]
- Dogra, S.; Stathokostas, L. Sedentary behavior and physical activity are independent predictors of successful aging in middle-aged and older adults. J. Aging Res. 2012, 2012, 190654. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-S.; Hsieh, C.-C.; Cheng, H.-S.; Tseng, T.-J.; Su, S.-C. Association between Physical Fitness and Successful Aging in Taiwanese Older Adults. PLoS ONE 2016, 11, e0150389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeschke, L.; Steinbrecher, A.; Boeing, H.; Gastell, S.; Ahrens, W.; Berger, K.; Brenner, H.; Ebert, N.; Fischer, B.; Greiser, K.H.; et al. Factors associated with habitual time spent in different physical activity intensities using multiday accelerometry. Sci. Rep. 2020, 10, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, O.P.; Khan, K.M.; Hankey, G.J.; Yeap, B.B.; Golledge, J.; Flicker, L. 150 minutes of vigorous physical activity per week predicts survival and successful ageing: A population-based 11-year longitudinal study of 12 201 older Australian men. Br. J. Sports Med. 2014, 48, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Lavoie, K.L.; Bacon, S.L. Taking up physical activity in later life and healthy ageing: The English longitudinal study of ageing. Br. J. Sports Med. 2014, 48, 239–243. [Google Scholar] [CrossRef]
- Menai, M.; Van Hees, V.T.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A.; Sabia, S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: Results from the Whitehall II study. Sci. Rep. 2017, 8, 45772. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.R., Jr.; Rowlands, A.V.; Trost, S.G. Calibration and validation of wearable monitors. Med. Sci. Sports Exerc. 2012, 44, S32. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.S.; Morey, M.C.; Dutta, C.; Manini, T.M.; Weltman, A.L.; Nelson, M.E.; Morgan, A.L.; Senior, J.G.; Seyffarth, C.; Buchner, D.M. Activity-related energy expenditure in older adults: A call for more research. Med. Sci. Sports Exerc. 2014, 46, 2335–2340. [Google Scholar] [CrossRef] [Green Version]
- Manini, T.M. Energy expenditure and aging. Ageing Res. Rev. 2010, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Valiani, V.; Sourdet, S.; Schoeller, D.A.; Mackey, D.C.; Bauer, D.C.; Glynn, N.W.; Yamada, Y.; Harris, T.B.; Manini, T.M. Health, Aging and Body Composition Study Surveying predictors of late-life longitudinal change in daily activity energy expenditure. PLoS ONE 2017, 12, e0186289. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Mendes, M.; Da Silva, I.C.M.; Ramires, V.V.; Reichert, F.F.; Martins, R.C.; Tomasi, E. Calibration of raw accelerometer data to measure physical activity: A systematic review. Gait Posture 2018, 61, 98–110. [Google Scholar] [CrossRef]
- Metcalf, K.M.; Baquero, B.I.; Coronado Garcia, M.L.; Francis, S.L.; Janz, K.F.; Laroche, H.H.; Sewell, D.K. Calibration of the global physical activity questionnaire to Accelerometry measured physical activity and sedentary behavior. BMC Public Health 2018, 18, 412. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, E.; Bandinelli, S.; Di Iorio, A.; Gangemi, S.; Camici, S.; Lauretani, F.; Others Relationship between motor behaviour in young/middle age and level of physical activity in late life. Is muscle strength in the causal pathway. Adv. Rehabil. 2000, 9, 17–27. [Google Scholar]
- Ferrucci, L.; Bandinelli, S.; Benvenuti, E.; Di Iorio, A.; Macchi, C.; Harris, T.B.; Guralnik, J.M. Subsystems contributing to the decline in ability to walk: Bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J. Am. Geriatr. Soc. 2000, 48, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Bartali, B.; Ordovas, J.M.; Corsi, A.M.; Lauretani, F.; Ferrucci, L.; InCHIANTI. Investigators Association between physical activity, physical performance, and inflammatory biomarkers in an elderly population: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 760–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.V.; Coppin, A.K.; Manini, T.M.; Lauretani, F.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M. Midlife physical activity and mobility in older age: The InCHIANTI study. Am. J. Prev. Med. 2006, 31, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gomez, D.; Bandinelli, S.; Del-Panta, V.; Patel, K.V.; Guralnik, J.M.; Ferrucci, L. Three-year changes in physical activity and decline in physical performance over 9 years of follow-up in older adults: The invecchiare in Chianti study. J. Am. Geriatr. Soc. 2017, 65, 1176–1182. [Google Scholar] [CrossRef]
- Sardone, R.; Lampignano, L.; Guerra, V.; Zupo, R.; Donghia, R.; Castellana, F.; Battista, P.; Bortone, I.; Procino, F.; Castellana, M.; et al. Relationship between Inflammatory Food Consumption and Age-Related Hearing Loss in a Prospective Observational Cohort: Results from the Salus in Apulia Study. Nutrients 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, M.; Panza, F.; Piccininni, M.; Copetti, M.; Sardone, R.; Imbimbo, B.P.; Stella, E.; D’Urso, F.; Barulli, M.R.; Battista, P.; et al. Social Dysfunction in Older Age and Relationships with Cognition, Depression, and Apathy: The GreatAGE Study. J. Alzheimer’s Dis. 2018, 65, 989–1000. [Google Scholar] [CrossRef]
- Sabia, S.; Van Hees, V.T.; Shipley, M.J.; Trenell, M.I.; Hagger-Johnson, G.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A. Association between questionnaire- and accelerometer-assessed physical activity: The role of sociodemographic factors. Am. J. Epidemiol. 2014, 179, 781–790. [Google Scholar] [CrossRef]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; Van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; VAN Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hansen, B.H.; Van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- White, T.; Westgate, K.; Hollidge, S.; Venables, M.; Olivier, P.; Wareham, N.; Brage, S. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: A doubly labelled water study. Int. J. Obes. 2019, 43, 2333–2342. [Google Scholar] [CrossRef] [Green Version]
- White, T.; Westgate, K.; Wareham, N.J.; Brage, S. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults. PLoS ONE 2016, 11, e0167472. [Google Scholar] [CrossRef]
- Henry, C.J.K. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Wilson, S.A.J.; Rolland, V. Diet induced thermogenesis measured over 24h in a respiration chamber: Effect of diet composition. Int. J. Obes. 1999, 23, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Lancet Physical Activity Series Working Group Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Washburn, R.A.; McAuley, E.; Katula, J.; Mihalko, S.L.; Boileau, R.A. The physical activity scale for the elderly (PASE): Evidence for validity. J. Clin. Epidemiol. 1999, 52, 643–651. [Google Scholar] [CrossRef]
- Covotta, A.; Gagliardi, M.; Berardi, A.; Maggi, G.; Pierelli, F.; Mollica, R.; Sansoni, J.; Galeoto, G. Physical Activity Scale for the Elderly: Translation, Cultural Adaptation, and Validation of the Italian Version. Curr. Gerontol. Geriatr. Res. 2018, 2018, 8294568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.Y.; Bassett, D.R. The Technology of Accelerometry-Based Activity Monitors: Current and Future. Med. Sci. Sports Exerc. 2005, 37, S490–S500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, C.E.; Hagströmer, M.; Pober, D.M.; Bowles, H.R. Best practices for using physical activity monitors in population-based research. Med. Sci. Sports Exerc. 2012, 44, S68. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J. The Objective Monitoring of Physical Activity. Prog. Prev. Med. 2017, 2, e0007. [Google Scholar] [CrossRef]
- Smith, G.L.; Banting, L.; Eime, R.; O’Sullivan, G.; Van Uffelen, J.G. The association between social support and physical activity in older adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 56. [Google Scholar] [CrossRef]
- Sabia, S.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, A. Body mass index over the adult life course and cognition in late midlife: The Whitehall II Cohort Study. Am. J. Clin. Nutr. 2009, 89, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Benito-León, J.; Mitchell, A.J.; Hernández-Gallego, J.; Bermejo-Pareja, F. Obesity and impaired cognitive functioning in the elderly: A population-based cross-sectional study (NEDICES). Eur. J. Neurol. 2013, 20, 899–906. [Google Scholar] [CrossRef]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Wanigatunga, A.A.; Di, J.; Zipunnikov, V.; Urbanek, J.K.; Kuo, P.-L.; Simonsick, E.M.; Ferrucci, L.; Schrack, J.A. Association of Total Daily Physical Activity and Fragmented Physical Activity With Mortality in Older Adults. JAMA Netw. Open 2019, 2, e1912352. [Google Scholar] [CrossRef]
- Schrack, J.A.; Leroux, A.; Fleg, J.L.; Zipunnikov, V.; Simonsick, E.M.; Studenski, S.A.; Crainiceanu, C.; Ferrucci, L. Using Heart Rate and Accelerometry to Define Quantity and Intensity of Physical Activity in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 668–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeschke, L.; Steinbrecher, A.; Jeran, S.; Konigorski, S.; Pischon, T. Variability and reliability study of overall physical activity and activity intensity levels using 24 h-accelerometry-assessed data. BMC Public Health 2018, 18, 530. [Google Scholar] [CrossRef] [PubMed]
Median | Range | |
---|---|---|
AGE (Years) | 76 | 66 to 90 |
GENDER (Female) | 23 (46.0) | -- |
BMI (kg m−2) | 28.04 | 22.59 to 40.54 |
SMOKING (yes) | 2 (4.8) | -- |
EDUCATION (Years) | 5.5 | 3 to 17 |
MMSE | 27.4 | 21.9 to 30 |
GDS | 1.5 | 0 to 24 |
PASE | 88.33 | 2.86 to 311 |
InCHIANTI | ||
1 | 13 (26.0) | -- |
2 | 26 (52.0) | -- |
3 | 11 (22.0) | -- |
4 | -- | -- |
5 | -- | -- |
Meeting WHO recommendations (Yes) | 6 (12.0) | -- |
Physical Activity Intensity (InCHIANTI) | p-Value | |||
---|---|---|---|---|
1 | 2 | 3 | ||
AGE (Years) | 80 (68 to 89) | 77.5 (71 to 90) | 71 (66 to 87) | 0.01 * |
GENDER (Female) | 46.2 (6) | 13 (50.0) | 4 (36.4) | 0.75 a |
SMOKING (Yes) | -- | 1 (3.8) | 1 (16.7) | 0.32 a |
EDUCATION (Years) | 5 (5 to 16) | 7.5 (3 to 17) | 6.5 (5 to 13) | 0.81 * |
BMI (kg m-2) | 29.4 (24.0 to 32.7) | 28.1 (23.1 to 40.5) | 25.7 (22.6 to 34.4) | 0.44 * |
FFM (kg) | 49.2 (42.4 to 65.6) | 45.4 (35.4 to 66.9) | 52.4 (39.8 to 66.6) | 0.28 * |
PA (°) | 4.65 (3.6 to 6.6) | 5.4 (4.4 to 6.7) | 7.2 (3.7 to 12.0) | 0.04 * |
SMI (kg m−2) | 9.3 (6.6 to 12.2) | 8.5 (5.2 to 12.0) | 9.15 (6.4 to 13.1) | 0.6 * |
Hemoglobin (g dl−1) | 14.05 (13 to 16.8) | 13.75 (8.1 to 16.5) | 13.5 (12.5 to 16.9) | 0.74 * |
FBG (mg dl-1) | 93 (86 to 162) | 93.5 (77 to 146) | 93.5 (87 to 102) | 0.86 * |
GOT (U/L-1) | 20 (17 to 33) | 20.5 (16 to 55) | 21 (18 to 23) | 0.96 * |
GPT (U/L-1) | 17.5 (10 to 23) | 17 (11 to 46) | 17 (16 to 20) | 0.93 * |
GGt (U/L−1) | 12.5 (9 to 22) | 17.5 (10 to 53) | 24 (9 to 80) | 0.05 * |
Cholesterol (mg dl-1) | 167.5 (123 to 264) | 175 (106 to 237) | 178.5 (149 to 218) | 0.93 * |
Triglycerides (mg dl-1) | 92 (50 to 210) | 67.5 (32 to 176) | 107 (80 to 133) | 0.03 * |
Insulin (UI) | 7.65 (2.8 to 11.5) | 6.85 (2.40 to 17.0) | 6.32 (4.50 to 13.70) | 0.91 * |
MMSE | 27.6 (21.9 to 30) | 27.4 (22.3 to 30.0) | 27 (26.9 to 30.0) | 0.87 * |
GDS | 5 (0 to 12) | 1 (0 to 24) | 1 (0 to 13) | 0.26 * |
PASE | 82.6 (2.9 to 106.7) | 95.3 (27.6 to 311.0) | 92.9 (65.6 to 115.1) | 0.16 * |
Valid days | 7 (5 to 7) | 7 (5 to 7) | 7 (5 to 7) | 0.88 * |
Non wear hours | 0.04 (0 to 0.35) | 0 (0 to 0.20) | 0 (0 to 0.04) | 0.04 * |
ACC (mg day-1) | 23.3 (17.4 to 29.6) | 37.5 (22.1 to 61.3) | 44.4 (35.1 to 62.2) | <0.001 * |
AEE (kJ day-1 kg−1) | 38.0 (30.7 to 45.7) | 55.4 (36.5 to 84.6) | 63.9 (52.5 to 85.6) | <0.001 * |
Physical Activity Intensity (InCHIANTI) | p-Value | |||
---|---|---|---|---|
1 | 2 | 3 | ||
Energy Expenditure (MJ day−1) | ||||
REE | 5.37 (4.76 to 6.44) | 5.31 (4.71 to 6.73) | 5.51 (5.03 to 6.32) | 0.67 * |
AEE | 2.53 (2.15 to 3.51) | 3.96 (2.92 to 6.51) | 4.39 (4.00 to 5.22) | <0.001 * |
TEE | 8.83 (7.87 to 10.97) | 10.24 (8.605 to 13.86) | 10.91 (10.50 to 11.89) | <0.001 * |
Time (min day−1) | ||||
Inactivity | 193.6 (105.4 to 311.3) | 235.75 (106.1 to 315.9) | 222.5 (180.60 to 377.80) | 0.48 * |
Light | 200.4 (108.6 to 249.2) | 295.9 (142.5 to 397.8) | 276.2 (217.2 to 399.90) | <0.001 * |
Moderate to Vigorous | 23.65 (10.82 to 69.62) | 91.63 (36.93 to 226.57) | 118.37 (83.24 to 189.21) | <0.001 * |
WHO PA Recommendation | ||||
meeting (Yes) | -- | 1 (3.8) | 5 (45.5) | 0.001 a * |
β | Standard Error | CI 95% | p Value | ||
---|---|---|---|---|---|
Partially Adjusted | (Intercept) | 51.55 | 25.46 | 1.66 to 101.44 | 0.04 |
InCHIANTI [2] | 19.96 | 3.47 | 13.17 to 26.76 | <0.01 | |
InCHIANTI (3] | 27.29 | 5.16 | 17.18 to 37.41 | <0.01 | |
AGE (years) | −0.13 | 0.28 | −0.68 to 0.43 | 0.65 | |
GENDER (Female) | 6.42 | 3.03 | 0.48 to 12.36 | 0.03 | |
BMI (kg m−2) | −0.26 | 0.37 | −0.98 to 0.46 | 0.48 | |
Fully Adjusted | (Intercept) | 79.44 | 39.374 | 2.269 to 156.61 | 0.04 |
InCHIANTI [2] | 17.434 | 4.192 | 9.218 to 25.65 | <0.01 | |
InCHIANTI [3] | 23.449 | 6.014 | 11.661 to 35.237 | <0.01 | |
AGE (years) | −0.406 | 0.341 | −1.074 to 0.261 | 0.23 | |
GENDER (Female) | 7.142 | 3.717 | −0.144 to 14.428 | 0.05 | |
BMI (kg m-2) | −0.412 | 0.462 | −1.317 to 0.493 | 0.37 | |
MMSE | 0.093 | 0.894 | −1.66 to 1.846 | 0.91 | |
GDS | −0.437 | 0.402 | −1.225 to 0.351 | 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortone, I.; Castellana, F.; Lampignano, L.; Zupo, R.; Moretti, B.; Giannelli, G.; Panza, F.; Sardone, R. Activity Energy Expenditure Predicts Clinical Average Levels of Physical Activity in Older Population: Results from Salus in Apulia Study. Sensors 2020, 20, 4585. https://doi.org/10.3390/s20164585
Bortone I, Castellana F, Lampignano L, Zupo R, Moretti B, Giannelli G, Panza F, Sardone R. Activity Energy Expenditure Predicts Clinical Average Levels of Physical Activity in Older Population: Results from Salus in Apulia Study. Sensors. 2020; 20(16):4585. https://doi.org/10.3390/s20164585
Chicago/Turabian StyleBortone, Ilaria, Fabio Castellana, Luisa Lampignano, Roberta Zupo, Biagio Moretti, Gianluigi Giannelli, Francesco Panza, and Rodolfo Sardone. 2020. "Activity Energy Expenditure Predicts Clinical Average Levels of Physical Activity in Older Population: Results from Salus in Apulia Study" Sensors 20, no. 16: 4585. https://doi.org/10.3390/s20164585
APA StyleBortone, I., Castellana, F., Lampignano, L., Zupo, R., Moretti, B., Giannelli, G., Panza, F., & Sardone, R. (2020). Activity Energy Expenditure Predicts Clinical Average Levels of Physical Activity in Older Population: Results from Salus in Apulia Study. Sensors, 20(16), 4585. https://doi.org/10.3390/s20164585