Wireless Technologies for Implantable Devices
Abstract
:1. Introduction
2. Wireless Sensor Technologies
2.1. Wireless Communication
2.1.1. Frequency Considerations
2.1.2. Security and Safety Considerations
2.2. Power
2.2.1. Passive Interrogators
2.2.2. Batteries in Implants
2.2.3. Remote Power
2.2.4. Energy Harvesting
3. Wireless Medical Sensors
3.1. Orthopedics
3.1.1. Smart Prosthetics
3.1.2. Fracture Healing
3.2. Cardiovascular
3.2.1. Blood Pressure Monitoring
3.2.2. Blood Flow Monitoring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takahata, K.; De Hennis, A.; Wise, K.D.; Gianchandani, Y.B. A Wireless Microsensor For Monitoring Flow and Pressure in a Blood Vessel Utilizing a Dual-Inductor Antenna Stent and Two Pressure Sensors. In Proceedings of the 17th IEEE International Conference on Micro Electo Mechanical Systems, Maastricht, The Netherlands, 25–29 January 2004; pp. 216–219. [Google Scholar]
- Sanders, R.S.; Lee, M.T. Implantable pacemakers. Proc. IEEE 1996, 84, 480–486. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Siraky, J.; Jendrzynski, H.; Rohlmann, A. Multichannel strain gauge telemetry for orthopaedic implants. J. Biomech. 1988, 21, 169–176. [Google Scholar] [CrossRef]
- Nicholls, P.J.; Berg, E.; Bliven, J.F.; Kling, J.M. X-ray diagnosis of healing fractures in rabbits. Clin. Orthop. Relat. Res. 1979, 234–236. [Google Scholar] [CrossRef]
- Anderson, C.; Saloner, D.; Lee, R.; Griswold, V.; Shapeero, L.; Rapp, J.; Nagarkar, S.; Pan, X.; Gooding, G. Assessment of carotid artery stenosis by MR angiography: Comparison with x-ray angiography. Am. J. Neuroradiol. 1992, 13, 989–1003. [Google Scholar]
- Bae, J.; Cho, H.; Song, K.; Lee, H.; Yoo, H.-J. The signal transmission mechanism on the surface of the human body for body channel communication. Ieee Trans. Microw. Theory Tech. 2012, 60, 582–593. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Z.; Steiger, C.; Traverso, G.; Adib, F. Enabling deep-tissue networking for miniature medical devices. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 417–431. [Google Scholar]
- Nachemson, A. Lumbar intradiscal pressure: Experimental studies on post-mortem material. Acta Orthop. Scand. 1960, 31, 1–104. [Google Scholar] [CrossRef]
- Andreu-Perez, J.; Leff, D.R.; Ip, H.M.D.; Yang, G.-Z. From wearable sensors to smart implants—Toward pervasive and personalized healthcare. IEEE Trans. Biomed. Eng. 2015, 62, 2750–2762. [Google Scholar] [CrossRef] [Green Version]
- Klosterhoff, B.S.; Tsang, M.; She, D.; Ong, K.G.; Allen, M.G.; Willet, N.J.; Guldberg, R.E. Implantable sensors for regenerative medicine. J. Biomech. Eng. 2017, 139, 21009. [Google Scholar] [CrossRef] [Green Version]
- Karipott, S.S.; Nelson, B.D.; Guldberg, R.E.; Ong, K.G. Clinical potential of implantable wireless sensors for orthopedic treatments. Expert Rev. Med Devices 2018, 15, 255–264. [Google Scholar] [CrossRef]
- Ledet, E.H.; D’Lima, D.; Westerhoff, P.; Szivek, J.A.; Wachs, R.A.; Bergmann, G. Implantable sensor technology: From research to clinical practice. J. Am. Acad. Orthop. Surg. 2012, 20, 383–392. [Google Scholar] [CrossRef]
- Potkay, J.A. Long term, implantable blood pressure monitoring systems. Biomed. Microdevices 2008, 10, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Loeb, G.E.; Richmond, F.J.R.; Baker, L.L. The BION devices: Injectable interfaces with peripheral nerves and muscles. Neurosurg. Focus 2006, 20, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.G.; Grimes, C.A.; Robbins, C.L.; Singh, R.S. Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sens. Actuators A Phys. 2001, 93, 33–43. [Google Scholar] [CrossRef]
- Grimes, C.A.; Mungle, C.S.; Zeng, K.; Jain, M.K.; Dreschel, W.R.; Paulose, M.; Ong, K.G. Wireless magnetoelastic resonance sensors: A critical review. Sensors 2002, 2, 294–313. [Google Scholar] [CrossRef] [Green Version]
- 802.11-2016—IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Available online: https://standards.ieee.org/standard/802_11-2016.html (accessed on 14 August 2020).
- 802.15.1-2005—IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN). Available online: https://standards.ieee.org/standard/802_15_1-2005.html (accessed on 14 August 2020).
- Baker, N. ZigBee and Bluetooth: Strengths and weaknesses for industrial applications. Comput. Control Eng. 2005, 16, 20–25. [Google Scholar] [CrossRef]
- Chakole, S.; Jibhkate, R.R.; Choudhari, A.V.; Gawali, S.R.; Tule, P.R. A healthcare monitoring system using WiFi module. Int. Res. J. Eng. Technol. 2017, 4, 1413–1417. [Google Scholar]
- Thread Group. Thread 1.1 Specification. 2017. Available online: https://www.threadgroup.org/ThreadSpec (accessed on 14 August 2020).
- Gabriel, C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. King’s Coll. Lond. Dep. Phys. 1996. [Google Scholar] [CrossRef] [Green Version]
- Yazdandoost, K.Y.; Kohno, R. Wireless communications for body implanted medical devices. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007. [Google Scholar]
- Poon, A.S.; O’Driscoll, S.; Meng, T.H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 2010, 58, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Federal Communications Commission. RF Safety FAQ; 2015. Available online: https://www.fcc.gov/engineering-technology/electromagnetic-compatibility-division/radio-frequency-safety/faq/rf-safety (accessed on 14 August 2020).
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-field RF powering of implantable devices: Safety considerations. IEEE Trans. Biomed. Eng. 2013, 60, 2017–2112. [Google Scholar] [CrossRef]
- Federal Communications Commission. Wireless Service; 2017. Available online: https://www.fcc.gov/wireless-services (accessed on 14 August 2020).
- International Telecommunications Union. Terminology and Technical Characteristics. 2016. Available online: https://life.itu.int/radioclub/rr/art1.pdf (accessed on 14 August 2020).
- Halperin, D.; Heydt-Benjamin, T.S.; Fu, K.; Kohno, T.; Maisel, W.H. Security and Privacy for Implantable Medical Devices. IEEE Pervasive Comput. 2008, 7, 30–39. [Google Scholar] [CrossRef]
- The Institute of Electrical and Electronics Engineers. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Antennas Propag. Mag. 2006, 48, 157–159. [Google Scholar] [CrossRef] [Green Version]
- Mark, M.; Bjorninen, T.; Ukkonen, L.; Sydanheimo, L.; Rabaey, J.M. SAR reduction and link optimization for mm-size remotely powered wireless implants using segmented loop antennas. In Proceedings of the IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Phoenix, AZ, USA, 16–20 January 2011. [Google Scholar]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Haar, G.T. Ultrasound bioeffects and safety. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Mathuna, C.O.; O’Donnell, T.; Martinez-Catala, R.V.; Rohan, J.; O’Flynn, B. Energy scavenging for long-term deployable wireless sensor networks. Tantala 2008, 75, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Klosterhoff, B.S.; Ong, K.G.; Krishnan, L.; Hetzendorfer, K.M.; Chang, Y.H.; Allen, M.G.; Guldberg, R.E.; Willett, N.J. Wireless implantable sensor for noninvasive, longitudinal quantification of axial strain across rodent long bone defects. J. Biomech. Eng. 2017, 139, 111004. [Google Scholar] [CrossRef]
- Chen, P.-J.; Saati, S.; Varma, R.; Humayun, M.S.; Tai, Y.C. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromech. Syst. 2010, 19, 721–734. [Google Scholar] [CrossRef]
- Oess, N.P.; Weisse, B.; Nelson, B.J. Megnetoelastic strain sensor for optimized assessment of bone fracture fixation. IEEE Sens. J. 2009, 9, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Gattiker, F.; Umbrecht, F.; Neuenschwander, J.; Sennhauser, U.; Hierold, C. Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sens. Actuators A Phys. 2008, 145, 291–298. [Google Scholar] [CrossRef]
- Lodato, R.; Lopresto, V.; Pinto, R.; Marrocco, G. Numerical and experimental characterization of through-the-body UHF-RFID links for passive tags implanted into human limbs. IEEE Trans. Antennas Propag. 2014, 62, 5298–5306. [Google Scholar] [CrossRef]
- Horton, B.E.; Schweitzer, S.; DeRouin, A.J.; Ong, K.G. A varactor-based, inductively coupled wireless pH sensor. IEEE Sens. J. 2011, 11, 1061–1066. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.-Q.; Huang, Q.-A. Design of LC-type passive wireless multi-parameter sensor. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 7–10 April 2013; pp. 256–259. [Google Scholar] [CrossRef]
- Milner, R.; Verhagen, H.J.; Prinssen, M.; Blankensteijn, J.D. Noninvasive intrasac pressure measurement ant the influence of type 2 and type 3 endoleaks in an animal model of abdominal aortic aneurysm. Vascular 2004, 12, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Engdahl, G. Handbook of Giant Magnetostrictive Materials; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Shen, W.; Mathison, L.C.; Petrenko, V.A.; Chin, B.A. Design and characterization of a magnetoelastic sensor for the detection of biological agents. J. Phys. D Appl. Phys. 2010, 43, 015004. [Google Scholar] [CrossRef]
- Stoyanov, P.G.; Grimes, C.A. A remote query magnetostrictive viscosity sensor. Sens. Actuators A Phys. 2000, 80, 8–14. [Google Scholar] [CrossRef]
- Tan, E.L.; Ong, K.G. Magneto-harmonic pressure sensor for biomedical applications. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5594–5597. [Google Scholar] [CrossRef]
- Calton, R.; Mathew, C. Longest lasting VII pacemaker on the Indian subcontinent: Over 28.1 hears of pacing without requiring pulse generator replacement. IHJ Cardiovasc. Case Rep. 2018, 2, 201–204. [Google Scholar]
- Mond, H.G.; Proclemer, A. The 11th World Survey of Cardiac Pacing and Implantable Cardioverter-Defibrillators: Calendar Year 2009—A World Society of Arrhythmia’s Project. PACE 2011, 34, 1013–1027. [Google Scholar] [CrossRef]
- Nachemson, A.; Elfstrom, G. Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis. J. Bone Jt. Surg. 1971, 53, 445–465. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Palandrani, F.; De Santis, V.; Hirata, A.; Feliziani, M. Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans. Microw. Theory Tech. 2016, 64, 633–642. [Google Scholar] [CrossRef]
- Shepherd, R.K. The Biomedical Engineering of Neural Prostheses; John Wiley & Sons: Hoboken, NJ, USA, 2016; p. 343. [Google Scholar]
- Ahn, D.; Ghovanloo, M. Optimal design of wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 125–137. [Google Scholar] [CrossRef]
- Ozeri, S.; Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 2010, 50, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Soora, S.; Gosalia, K.; Humayun, M.S.; Lazzi, G. A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis. IEEE Trans. Antennas Propag. 2008, 56, 622–629. [Google Scholar] [CrossRef]
- Moon, E.; Blaauw, D.; Phillips, J.D. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-implantable Devices. IEEE Trans. Electron Devices 2017, 64, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Charthad, J.; Chang, T.C.; Liu, Z.; Sawaby, A.; Weber, M.J.; Baker, S.; Gore, F.; Felt, S.A.; Arbabian, A. A mm-sized wireless implantable device for electrical stimulation of peripheral nerves. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Abid, A.; O’Brien, J.M.; Bensel, T.; Cleveland, C.; Booth, L.; Smith, B.R.; Langer, R.; Traverso, G. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci. Rep. 2007, 7, 46745. [Google Scholar] [CrossRef] [PubMed]
- Vo, J.; Chang, T.C.; Shea, K.I.; Myers, M.; Arbabian, A.; Vasudevan, S. Assessment of miniaturized ultrasound-powered implants: An in vivo study. J. Neural Eng. 2020, 17, 16072. [Google Scholar] [CrossRef]
- Larson, P.J.; Towe, B.C. Miniature ultrasonically powered wireless nerve cuff stimulator. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 265–268. [Google Scholar] [CrossRef]
- Kang, C.; Chang, T.C.; Vo, J.; Charthad, J.; Weber, M.; Arbabian, A.; Vasudevan, S. Long-term in vivo performance of novel ultrasound powered implantable devices. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18 July 2018. [Google Scholar]
- Makin, I.R.S.; Radziemski, L.; Jabs, H.; Mast, T.D. In-vivo demonstration of a self-contained ultrasound-based battery charging approach for medical implants. J. Acoust. Soc. Am. 2017, 141, 3956. [Google Scholar] [CrossRef]
- Denisov, A.; Yeatman, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. In Proceedings of the 2010 International Conference on Body Sensor Networks, Singapore, 7 June 2010; pp. 84–89. [Google Scholar] [CrossRef]
- Meng, M.; Kiani, M. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 98–107. [Google Scholar] [CrossRef]
- Goto, K.; Nakagawa, T.; Nakamura, O.; Kawata, S. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 2001, 48, 830–833. [Google Scholar] [CrossRef]
- Song, S.H.; Kim, A.; Ziaie, B. Omnidirectional ultrasonic powering for millimeter-scale implantable devices. IEEE Trans. Biomed. Eng. 2015, 62, 2717–2723. [Google Scholar] [CrossRef]
- Nelson, B.D. A Smart Implantable Bone Fixation Plate Providing Actuation and Load Monitoring for Orthopedic Fracture Healing. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2019. [Google Scholar]
- Stark, I.; Stordeur, M. New micro thermoelectric devices based on bismuth telluride-type thin solid films. In Proceedings of the Eighteenth International Conference on Thermoelectrics, Baltimore, MD, USA, 29 August 1999. [Google Scholar]
- Haeberlin, A.; Zurbuchen, A.; Walpen, S.; Schaerer, J.; Niederhauser, T.; Huber, C.; Tanner, H.; Servatius, H.; Seiler, J.; Haeberlin, H.; et al. The first batteryless, solar-powered cardiac pacemaker. Heart Rhythm 2015, 12, 1317–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeberlin, A.; Zurbuchen, A.; Schaerer, J.; Wagner, J.; Sebastien, W.; Huber, C.; Haeberlin, H.; Fuhrer, J.; Vogel, R. Successful pacing using a batteryless sunlight-powered pacemaker. Ep Eur. 2014, 16, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Redouté, J.M.; Yuce, M.R. A Wireless Implantable Sensor Design With Subcutaneous Energy Harvesting for Long-Term IoT Healthcare Applications. IEEE Access 2018, 6, 35801–35808. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38. [Google Scholar] [CrossRef]
- Chen, Z.; Law, M.-K.; Mak, P.-I.; Martins, R.P. A single-chip solar energy harvesting IC using integrated photodiodes for biomedical implant applications. IEEE Trans. Biomed. Circuits Syst. 2016, 11, 44–53. [Google Scholar] [CrossRef]
- Bereuter, L.; Williner, S.; Pianezzi, F.; Bissig, B.; Buecheler, S.; Burger, J.; Vogel, R.; Zurbuchen, A.; Haeberlin, A. Energy harvesting by subcutaneous solar cells: A long-term study on achievable energy output. Ann. Biomed. Eng. 2017, 45, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Platt, S.R.; Farritor, S.; Garvin, K.; Haider, H. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/Asme Trans. Mechatron. 2005, 10, 455–461. [Google Scholar] [CrossRef]
- Zheng, Q.; Shi, B.; Fan, F.; Wang, X.; Yan, L.; Yuan, W.; Wang, S.; Liu, H.; Li, Z.; Wang, Z.L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Yang, B.D.; Su, Y.; Tran, P.L.; Joe, P.; Anderson, E.; Xia, J.; Doraiswamy, V.; Dehdashti, B.; Feng, X.; et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 2014, 111, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. Second Int. Symp. Wearable Comput. 1998. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, G.; Yang, R.; Wang, A.C.; Wang, Z.L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010, 22, 2534–2537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xue, X.; Ma, Y.; Han, M.; Zhang, W.; Xu, Z.; Zhang, H.; Zhang, H. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy 2016, 22, 453–460. [Google Scholar] [CrossRef]
- Desai, S.S. Early diagnosis of spinal tuberculosis by MRI. J. Bone Jt. Surg. Br. Vol. 1994, 76, 863–869. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Lascols, N.; Meziere, G.; Gepner, A. Ultrasound diagnosis of alveolar consolidation in the critically ill. Intensive Care Med. 2004, 30, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.M.; Fogelman, I. Role of dual-energy x-ray absorptiometry in the diagnosis and treatment of osteoporosis. J. Clin. Densitom. 2007, 10, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Clinton, J.; Franta, A.K.; Lenters, T.R.; Mounce, D.; Matsen Iii, F.A. Nonprosthetic glenoid arthoplasty with humeral hemiarthroplasty and total shoulder arthroplasty yield similar self-assessed outcomes in the management of comparable patients with glenomumeral arthritis. J. Shoulder Elb. Surg. 2007, 16, 534–538. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Dymke, J.; Rohlmann, A.; Duda, G.N.; Damm, P. High-tech hip implant for wireless temperature measurements in vivo. PLoS ONE 2012, 7, e43489. [Google Scholar] [CrossRef] [Green Version]
- D’Lima, D.D.; Townsend, C.P.; Arms, S.W.; Morris, B.A.; Colwell, C.W. An implantable telemetry device to measure intra-articular tibial forces. J. Biomech. 2005, 38, 299–304. [Google Scholar] [CrossRef]
- Klosterhoff, B.S.; Kaiser, J.; Nelson, B.D.; Karipott, S.S.; Ruehle, M.A.; Hollister, S.J.; Weiss, J.A.; Ong, K.G.; Willett, N.J.; Guldberg, R.E. Wireless sensor enables longitudinal monitoring of regenerative niche mechanics during rehabilitation that enhance bone repair. Bone 2020, 135, 115311. [Google Scholar] [CrossRef]
- Carlson, C.E.; Mann, R.W.; Harris, W.H. A radio telemetry device for monitoring cartilage surface pressures in the human hip. IEEE Trans. Biomed. Eng. 1974, 21, 257–264. [Google Scholar] [CrossRef]
- Kilvington, M.; Goodman, R. In vivo hip joint forces recorded on a strain gauged ‘English’ prosthesis using an implanted transmitter. Eng. Med. 1981, 10, 175–187. [Google Scholar] [CrossRef]
- Damm, P.; Graichen, F.; Rohlmann, A.; Bender, A.; Bergmann, G. Total hip joint prosthesis for in vivo measurement of forces and moments. Med. Eng. Phys. 2010, 32, 95–100. [Google Scholar] [CrossRef]
- Taylor, S. A telemetry system for measurement of forces in massive orthopaedic implants in vivo. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 10 October 1996. [Google Scholar]
- Westerhoff, P.; Graichen, F.; Bender, A.; Rohlmann, A.; Bergmann, G. An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint. Med. Eng. Phys. 2009, 31, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Hauerstock, D.; Reindl, R.; Steffen, T. Telemetric Measurement of Compressive Loads in the Sheep Lumbar Spine. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2000. [Google Scholar]
- Cole, C.P.; Navarro, R.R. EDisc—The first artificial spinal disc with integral force-sensing microelectronics. Front. Biomed. Devices 2007, 42665, 49–50. [Google Scholar]
- Szivek, J.A.; Roberto, R.F.; Margolis, D.S. In vivo strain measurements from hardware and lamina during spine fusion. J. Biomed. Mater. Res. 2005, 75, 243–250. [Google Scholar] [CrossRef]
- Glos, D.L.; Sauser, F.E.; Papautski, I.; Bylski-Astrow, D.I. Implantable MEMS compressive stress sensors: Design, fabrication and calibration with application to the disc annulus. J. Biomech. 2010, 43, 2244–2248. [Google Scholar] [CrossRef]
- Bylski-Astrow, D.I.; Glos, D.L.; Sauser, F.E.; Jain, V.V.; Wall, E.J.; Crawford, A.H. In vivo dynamic compressive stresses in the disc annulus: A pilot study of bilateral differences due to hemiepiphyseal implant in a quadruped model. Spine 2012, 37, E949–E956. [Google Scholar] [CrossRef]
- Richardson, J.B.; Cunningham, J.L.; Goodship, A.E.; O’Connor, B.T.; Kenwright, J. Measuring stiffness can define healing of tibial fractures. J. Bone Jt. Surg. Ser. B 1994, 76, 389–394. [Google Scholar] [CrossRef]
- Chehade, M.J.; Pohl, A.P.; Pearcy, M.J.; Nawana, N. Clinical implications of stiffness and strength changes in fracture healing. J. Bone Jt. Surg. Br. Vol. 1997, 79, 9–12. [Google Scholar] [CrossRef]
- Hirsch, C.; Waugh, T. The instroduction of force measurements guiding instrumental correction of scoliosis. Acta Orthop. Scand. 1968, 39, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Graichen, F.; Bergmann, G. Four-channel telemetry system for in vivo measurement of hip joint forces. J. Biomed. Eng. 1991, 13, 370–374. [Google Scholar] [CrossRef]
- Brown, R.H.; Burstein, A.H.; Frankel, V.H. Telemetering in vivo loads from nail plate implants. J. Biomech. 1982, 15, 815–823. [Google Scholar] [CrossRef]
- Burny, F.; Donkerwolcke, M.; Moulart, F.; Bourgois, R.; Puers, R.; Van Schuylenbergh, K.; Barbosa, M.; Paiva, O.; Rodes, F.; Begueret, J. Concept, design and fabrication of smart orthopedic implants. Med. Eng. Phys. 2000, 22, 469–479. [Google Scholar] [CrossRef]
- Schneider, E.; Michel, M.C.; Genge, M.; Zuber, K.; Ganz, R.; Perren, S.M. Loads acting in an intramedullary nail during fracture healing in the human femur. J. Biomech. 2001, 34, 849–857. [Google Scholar] [CrossRef]
- Burny, F. Study of consolidation of fracture by deformation gauges in clinical medicine. Acta Orthop. Belg. 1968, 34, 917–927. [Google Scholar]
- Claes, L.E.; Cunningham, J.L. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 2009, 467, 1964–1971. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Hu, J.; Ren, L.; Zhu, J.; Yang, J.; Liu, D. A passive and wireless sensor for bone plate strain monitoring. Sensors 2017, 17, 2635. [Google Scholar]
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; European Heart Network: Brussels, Belgium, 2017; Available online: https://researchportal.bath.ac.uk/en/publications/european-cardiovascular-disease-statistics-2017 (accessed on 14 August 2020).
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart disease and stroke statistics-2017 update: A report from the American heart association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Chow, E.Y.; Ouyang, Y.; Beier, B.; Chappell, W.J.; Irazoqui, P.P. Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE Trans. Microw. Theory Tech. 2009, 57, 2523–2532. [Google Scholar] [CrossRef]
- Yeshwant, K.; Ghaffari, R. A biodegradable wireless blood flow sensor. Nat. Biomed. Eng. 2019, 3, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evalueation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical P. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Dagan, A.; Gringouz, I.; Kliers, I.; Segal, G. Disability progression in multiple sclerosis is affected by the emergence of comorbid arterial hypertension. J. Clin. Neurol. 2016, 12, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.; Olson, L.J. Sleep apnea and cardiovascular disease: An Ameridan Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for high blood pressure research professional education committee, council on. J. Am. Coll. Cardiol. 2008, 52, 686–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.; Beckett, N.; Forette, F.; Tuomilehto, J.; Clarke, R.; Ritchie, C.; Waldman, A.; Walton, I.; Poulter, R.; Ma, S. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive functional assessment (HYVET-COG): A double-blind, placebo controlled trial. Lancet Neurol. 2008, 7, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Van Citters, R.; Franklin, D. Telemetry of blood pressure in free-ranging animals via an intravascular gauge. J. Appl. Physiol. 1966, 21, 1633–1636. [Google Scholar] [CrossRef]
- Sandler, H.; Fryer, T.B.; Datnow, B. Single-channel pressure telemetry unit. J. Appl. Physiol. 1969, 26, 235–238. [Google Scholar] [CrossRef]
- Ristow, B.; Ali, S.; Ren, X.; Whooley, M.A.; Schiller, N.B. Elevated pulmonary artery pressure by doppler echocardiography predicts hospitalization for heart failure and mortality in ambulatory stable coronary artery disease: The Heart and Soul Study. J. Am. Coll. Cardiol. 2007, 49, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Heywood, J.T.; Jermyn, R.; Shavelle, D.; Abraham, W.T.; Bhimaraj, A.; Bhatt, K.; Sheikh, F.; Eichorn, E.; Lamba, S.; Bharmi, R.; et al. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation 2017, 135, 1509–1517. [Google Scholar] [CrossRef]
- Sandhu, A.T.; Goldhaber-Fiebert, J.D.; Owens, D.K.; Turakhia, M.P.; Kaiser, D.W.; Heidenreich, P.A. Cost-effectiveness of implantable pulmonary artery pressure monitoring in chronic heart failure. JACC Heart Fail. 2016, 4, 368–375. [Google Scholar] [CrossRef]
- Brockway, B.P.; Mills, P.A.; Azar, S.H. A new method for continuous chronic measurement and recording of blood pressure, heart rate and activity in the rat via radio-telemetry. Clin. Exp. Hypertens Part A Theory Pract. 1991, 13, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.A.; Huetteman, D.A.; Brockway, B.P.; Zwiers, M.; Gelsema, A.M.; Schwartz, R.S.; Kramer, K. A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry. J. Appl. Physiol. 2000, 88, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, R.; McClure, T.; Lin, C.; Jea, D.; Dabiri, F.; Massey, T.; Sarrafzadeh, M.; Srivastava, M.; Montemagno, C.; Schulam, P. Development of a fully implantable wireless pressure monitoring system. Biomed. Microdevices 2009, 11, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Young, D.J.; Hoit, B.; Ko, W.H. Novel long-term implantable blood pressure monitoring system with reduced baseline drift. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Chow, E.Y.; Chlebowski, A.L.; Chakraborty, S.; Chappell, W.J.; Irazoqui, P.P. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 2010, 57, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Ziaie, B.; Najafi, K. An implantable microsystem for tonometric blood pressure measurement. Biomed. Microdevices 2001, 3, 285–292. [Google Scholar] [CrossRef]
- Najafi, N.; Ludomirsky, A. Initial animal studies of a wireless, batteryless, MEMS impant for cardiovascular applications. Biomed. Microdevices 2004, 6, 61–65. [Google Scholar] [CrossRef]
- Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2017, 18, 419. [Google Scholar] [CrossRef] [Green Version]
- Vigilance, J.E.; Reid, H.L. Segmental blood flow and rheological determinants in diabetic patients with peripheral occlusive arterial disease. J. Diabetes Its Complicat. 2008, 22, 210–216. [Google Scholar] [CrossRef]
- Zhang, X.; Schindler, T.H.; Prior, J.O.; Sayre, J.; Dahlbom, M.; Huang, S.; Schelbert, H.R. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Hartley, C.; Cole, J. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J. Appl. Physiol. 1974, 37, 626–629. [Google Scholar] [CrossRef]
- Vatner, S.F.; Franklin, D.; Van Citters, R.L. Simultaneous comparison and calibration of the Doppler and electromagnetic flowmeters. J. Appl. Physiol. 1970, 29, 907–910. [Google Scholar] [CrossRef] [PubMed]
BLE | Zigbee | Thread | WiFi | Passive | |
---|---|---|---|---|---|
Frequency | 2.4 GHz | 2.4 GHz | 2.4 GHz | 2.4 GHz | N/A |
Bandwidth | 1 MHz | 2 MHz | 2 MHz | 22 MHz | N/A |
Mesh Capable | Yes * | Yes | Yes | Yes | No |
IPv6 Addressable | No | No | Yes | Yes | No |
Encryption | AES | AES | AES | WEP/WPA | None |
Ultrasound | Electromagnetic | Light | |
---|---|---|---|
Frequency | 200 kHz–1.2 MHz [53] | 1 MHz–3 GHz [54] | 220 THz–460 THz [55] |
Receiver | Piezoelectric element | Antenna | Photovoltaic cell |
Depth | Over 10 cm [56] | Up to 5 cm [57] | Less than 5 mm |
Misalignment Resilience | Moderate | Very Low | Low |
Haeberlin 2015 [68] | Haeberlin 2014 [69] | Wu 2018 [70] | |
---|---|---|---|
Depth (mm) | 2.4 | 3.1 | 3 |
Location | Neck (pig) | Abdomen (pig) | Skin flap |
Average Power (mW) | 6.747 | 15.448 | 0.6–5.5 |
Power/Area (mW/cm2) | 1.417 | 4.768 | 0.025–0.234 |
Platt 2005 [74] | Zheng 2014 [75] | Dagdeviren 2014 [76] | |
---|---|---|---|
Transducer | Piezoelectric | Triboelectric | Piezoelectric |
Location | Knee (ex vivo) | Lungs (rat) | Heart (cow) |
Average Power (mW) | 4.8 | 0.0005 | 0.0012 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, B.D.; Karipott, S.S.; Wang, Y.; Ong, K.G. Wireless Technologies for Implantable Devices. Sensors 2020, 20, 4604. https://doi.org/10.3390/s20164604
Nelson BD, Karipott SS, Wang Y, Ong KG. Wireless Technologies for Implantable Devices. Sensors. 2020; 20(16):4604. https://doi.org/10.3390/s20164604
Chicago/Turabian StyleNelson, Bradley D., Salil Sidharthan Karipott, Yvonne Wang, and Keat Ghee Ong. 2020. "Wireless Technologies for Implantable Devices" Sensors 20, no. 16: 4604. https://doi.org/10.3390/s20164604
APA StyleNelson, B. D., Karipott, S. S., Wang, Y., & Ong, K. G. (2020). Wireless Technologies for Implantable Devices. Sensors, 20(16), 4604. https://doi.org/10.3390/s20164604