Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion
Abstract
:1. Introduction
- To our best knowledge, the proposed system is the first tightly coupled optimization-based RGB-D-inertial system based on points and lines.
- At the beginning of the system, 3D point features can be directly obtained from depth images produced by the RGB-D camera. To correct IMU bias at the beginning, we implemented a fast initialization aligning vision-only measurements with the values of IMU pre-integration.
- This paper achieves an RGB-D-inertial nonlinear optimization framework with constraints of both the IMU kinematic model and the reprojection of points and lines in sliding windows. An orthonormal representation is employed to parameterize line segments and analytically calculate the corresponding Jacobians.
2. Mathematical Formulation
2.1. Notations and Definitions
2.2. IMU Pre-Integration
2.3. Representation of 3D Line Features
3. Overall Structure of the VIO System
4. Nonlinear Optimization Framework
4.1. System State
4.2. System Initialization
4.2.1. Structure from Motion (SFM)
4.2.2. Visual-IMU Alignment
4.3. IMU Measurement Residual
4.4. Visual Reprojection Residual
4.5. Marginalization
4.6. Loop Closure
5. Experiment
5.1. STAR-Center Dataset
5.2. OpenLORIS-Scene Dataset
5.3. Running Time Performance Evaluation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, S.; Bai, X.; Wang, Y.; Fang, R. Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization. Sensors 2019, 19, 3747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, L.; Medina, D.; Vilà-Valls, J.; Vincent, F.; Chaumette, E. Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals. Sensors 2020, 20, 3586. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Lim, J. Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation. Sensors 2018, 18, 4287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Zheng, L.; Deng, H.; Zhang, H. Real-time motion tracking for mobile augmented/virtual reality using adaptive visual-inertial fusion. Sensors 2017, 17, 1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falquez, J.M.; Kasper, M.; Sibley, G. Inertial aided dense & semi-dense methods for robust direct visual odometry. In Proceedings of the 29th IEEE/RSJ International Conference on Intelligent Robots & Systems, Daejeon, Korea, 9–14 October 2016; pp. 3601–3607. [Google Scholar]
- Liu, H.; Chen, M.; Zhang, G.; Bao, H.; Bao, Y. Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1974–1982. [Google Scholar]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-Aided Inertial Navigation. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-manifold preintegration for real-time visual-inertial odometry. IEEE Trans. Robot. 2017, 33, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Li, P.; Shen, S. VINS-MONO: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Liu, H.; Zhu, X.; Jiang, J.; Liang, B. RGB-D inertial odometry for indoor robot via Keyframe-based nonlinear optimization. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 973–979. [Google Scholar]
- Wang, C.; Yuan, J.; Xie, L. Non-iterative SLAM. In Proceedings of the 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 83–90. [Google Scholar]
- He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features. Sensors 2018, 18, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Yu, H.; Wang, J.; Peng, X.; Sun, W.; Sun, M.; Lai, L. A Robust RGB-D SLAM System with Points and Lines for Low Texture Indoor Environments. IEEE Sens. J. 2019, 99. [Google Scholar] [CrossRef]
- Wang, S.; Han, B. RGB-D visual odometry with point and line features in dynamic environment. J. Phys. Conf. Ser. 2019, 1303. [Google Scholar] [CrossRef]
- Lu, Y.; Song, D. Robust RGB-D odometry using point and line features. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3934–3942. [Google Scholar]
- Bartoli, A.; Sturm, P. The 3D line motion matrix and alignment of line reconstructions. Int. J. Comput. Vis. 2004, 57, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yao, J.; Li, K.; Li, L. CannyLines: A parameter-free line segment detector. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 507–511. [Google Scholar]
- Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A line segment detector. IPOL 2012, 2, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [Google Scholar] [CrossRef]
- Zhang, G.; Lee, J.H.; Lim, J.; Suh, I.H. Building a 3-D line-based map using stereo SLAM. IEEE Trans. Robot. 2015, 31, 1364–1377. [Google Scholar] [CrossRef]
- Kong, X.; Wu, W.; Zhang, L.; Wang, Y. Tightly-coupled stereo visual-inertial navigation using point and line features. Sensors 2015, 15, 12816–12833. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Yang, S.; Lee, B.U. A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram. IEEE Trans. Image Process 2011, 20, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Shi, J.; Tomasi, C. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Karthik, O.S.; Varun, D.; Ramasangu, H. Localized Harris-FAST interest point detector. In Proceedings of the IEEE Annual India Conference (INDICON), Bangalore, India, 16–18 December 2016; pp. 1–6. [Google Scholar]
- Shen, S.; Michael, N.; Kumar, V. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5303–5310. [Google Scholar]
- Ceres Solver Home Page. Available online: http://ceres-solver.org (accessed on 9 April 2018).
- Sibley, G.; Matthies, L.; Sukhatme, G. Sliding window filter with application to planetary landing. J. Field Robot. 2010, 27, 587–608. [Google Scholar] [CrossRef]
- Galvez-Lopez, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Shan, Z.; Li, R.; Schwertfeger, S. RGBD-inertial trajectory estimation and mapping for ground robots. Sensors 2019, 19, 2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Li, D.; Zhao, P.; Tian, Q.; Tian, Y.; Long, Q.; Zhu, C.; Song, J.; Qiao, F.; Song, L.; et al. Are We Ready for Service Robots? The OpenLORIS-Scene Datasets for Lifelong SLAM. arXiv 2019, arXiv:1911.05603. [Google Scholar]
- MichaelGrupp GitHub Repository. Available online: https://github.com/MichaelGrupp/evo (accessed on 6 December 2018).
Sequences | OURS | PLVIO | OKVIS | VINS-MONO | LineSLAM |
---|---|---|---|---|---|
Handheld Simple | 0.0390 | 0.1351 | 0.8568 | 0.2457 | 1.5920 |
Handheld Normal | 0.1728 | 0.1885 | 1.0563 | 0.2355 | 1.6528 |
Handheld With more Rotation | 0.1966 | 0.2768 | 1.1203 | 0.3486 | 2.5645 |
Wheeled Fast | 0.1433 | 0.3096 | 1.4609 | 0.6355 | - |
Wheeled Normal | 0.0888 | 0.4411 | 1.6508 | 0.3548 | 2.2615 |
Wheeled Slow | 0.2169 | 1.1127 | - | 0.4252 | - |
Seq. | OURS | PLVIO | OKVIS | VINS-MONO | LineSLAM | |||||
---|---|---|---|---|---|---|---|---|---|---|
Trans. | Rot. | Trans. | Rot. | Trans. | Rot. | Trans. | Rot. | Trans. | Rot. | |
Home1–1 | 0.3459 | 0.1732 | 0.5427 | 0.1787 | 0.9085 | 0.2056 | 0.7374 | 0.2974 | 1.2452 | 0.4589 |
Home1–2 | 0.3178 | 0.4209 | 0.3239 | 0.5762 | 0.7752 | 0.5641 | 0.7056 | 0.3445 | 1.3598 | 0.6841 |
Home1–3 | 0.3391 | 0.1481 | 0.3780 | 0.1597 | 0.5618 | 0.3541 | 0.5154 | 0.1554 | 1.4526 | 0.6485 |
Home1–4 | 0.3174 | 0.1727 | 0.5742 | 0.1702 | 0.8415 | 0.2946 | 0.3545 | 0.1771 | 1.5256 | 0.7895 |
Home1–5 | 0.2366 | 0.1192 | 0.2324 | 0.1205 | 0.6845 | 0.2649 | 0.2551 | 0.3616 | 0.9212 | 0.5684 |
Sequences | OURS | PL-VIO | VINS-MONO |
---|---|---|---|
Handheld Simple | 37.2737 | 149.068 | 110.365 |
Handheld Normal | 38.621 | 139.913 | 98.465 |
Handheld With More Rotation | 16.9961 | 107.579 | 80.461 |
Wheeled Fast | 58.937 | 170.996 | 94.12 |
Wheeled Normal | 80.6177 | 155.938 | 124.25 |
Wheeled Slow | 78.2723 | 205.115 | 151.32 |
Home1–1 | 45.62 | 126.38 | 125.36 |
Home1–2 | 78.45 | 134.65 | 114.57 |
Home1–3 | 90.54 | 148.63 | 120.24 |
Home1–4 | 34.56 | 107.38 | 70.65 |
Home1–5 | 60.17 | 124.36 | 70.54 |
Sequences | OURS | PL-VIO | ||||
---|---|---|---|---|---|---|
Initialization | Optimization | Backend | Initialization | Optimization | Backend | |
Handheld Simple | 37.273 | 57.254 | 94.527 | 149.068 | 106.245 | 255.313 |
Handheld Normal | 38.621 | 49.245 | 87.866 | 139.913 | 84.451 | 224.364 |
Handheld With More Rotation | 16.996 | 84.254 | 101.25 | 107.579 | 60.245 | 167.824 |
Wheeled Fast | 58.937 | 78.245 | 137.182 | 170.996 | 106.245 | 277.241 |
Wheeled Normal | 80.617 | 120.453 | 201.07 | 155.938 | 94.156 | 250.094 |
Wheeled Slow | 78.272 | 113.245 | 191.517 | 205.115 | 163.145 | 368.26 |
Home1–1 | 45.62 | 60.254 | 105.874 | 126.38 | 65.215 | 191.595 |
Home1–2 | 78.45 | 90.214 | 168.664 | 134.65 | 105.364 | 240.014 |
Home1–3 | 90.54 | 36.854 | 127.394 | 148.63 | 70.548 | 219.178 |
Home1–4 | 34.56 | 60.866 | 97.426 | 107.38 | 101.593 | 208.973 |
Home1–5 | 60.17 | 70.214 | 130.384 | 124.36 | 120.648 | 245.008 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Miao, C.; Zhang, H. Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion. Sensors 2020, 20, 4666. https://doi.org/10.3390/s20174666
Zhao X, Miao C, Zhang H. Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion. Sensors. 2020; 20(17):4666. https://doi.org/10.3390/s20174666
Chicago/Turabian StyleZhao, Xiongwei, Cunxiao Miao, and He Zhang. 2020. "Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion" Sensors 20, no. 17: 4666. https://doi.org/10.3390/s20174666
APA StyleZhao, X., Miao, C., & Zhang, H. (2020). Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion. Sensors, 20(17), 4666. https://doi.org/10.3390/s20174666