Impedimetric Determination of Kanamycin in Milk with Aptasensor Based on Carbon Black-Oligolactide Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Aptasensor Fabrication
2.4. Kanamycin A Measurements and Real Sample Assay
3. Results and Discussion
3.1. Assembly of the Aptasensor
3.1.1. Voltammetric Measurements
3.1.2. SEM Measurements
3.1.3. EIS Measurements
3.1.4. Surface Layer Optimization
3.2. KANA Determination
3.3. Measurement Precision
3.4. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Zhang, Y.; Zhao, H.; He, Y.; Li, X.; Yuan, Z. Highly sensitive and selective colorimetric sensing of antibiotics in milk. Anal. Chim. Acta 2013, 778, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Bartlett, J.G.; Gilbert, D.N. The future of antibiotics and resistance. N. Engl. J. Med. 2013, 368, 299–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammie, S.L.; Hughes, J.M. Antimicrobial resistance, food safety, and one health: The need for convergence. Annu. Rev. Food Sci. Technol. 2016, 7, 287–312. [Google Scholar] [CrossRef]
- Cosgrove, S.E. The relationship between antimicrobial resistance and patient out-comes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Diseases 2016, 42, S82–S89. [Google Scholar] [CrossRef] [Green Version]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Griffiths, M.W.; McEwen, S.A.; McNab, W.B.; Yee, A.J. Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. J. Food. Prot. 1998, 61, 742–756. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, Y.K.; Ok, J.H. Development of liquid chromatographic method for the analysis of kanamycin residues in varicella vaccine using phenylisocyanate as a derivatization reagent. J. Chromatogr. B 2001, 752, 173–177. [Google Scholar] [CrossRef]
- Wang, L.; Peng, J. LC analysis of kanamycin in human plasma, by fluorescence detection of the 9-fluorenylmethyl chloroformate derivative. Chromatographia 2009, 69, 519–522. [Google Scholar] [CrossRef]
- Preu, M.; Guyot, D.; Petz, M. Development of a gas chromatography–mass spectrometry method for the analysis of aminoglycoside antibiotics using experimental design for the optimisation of the derivatisation reactions. J. Chromatogr. A 1998, 818, 95–108. [Google Scholar] [CrossRef]
- Zhu, G.; Bao, C.; Liu, W.; Yan, X.; Liu, W.; Xiao, J.; Chen, C. Rapid detection of AGs using microchip capillary electrophoresis contactless conductivity detection. Curr. Pharm. Anal. 2019, 15, 9–16. [Google Scholar] [CrossRef]
- Ge, S.; Tang, W.; Han, R.; Zhu, Y.; Wang, Q.; He, P.; Fang, Y. Sensitive analysis of aminoglycoside antibiotics via hyphenation of transient moving substitution boundary with field-enhanced sample injection in capillary electrophoresis. J. Chromatogr. A 2013, 1295, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Qu, L.-L.; Lin, D.-W.; Song, Q.-X.; Fathi, F.; Long, Y.-T. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag–graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 2013, 43, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jia, J.; Gao, X.; He, X.; Li, J. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry. Anal. Chim. Acta 2012, 720, 97–103. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Q.; Xu, C.; Li, H.; Wu, D.; Cai, Y.; Mao, K.; Cui, Z. Label-free electrochemical immunosensor for sensitive detection of kanamycin. Sens. Actuators B 2011, 155, 618–625. [Google Scholar] [CrossRef]
- Wei, Q.; Zhao, Y.; Du, B.; Wu, D.; Li, H.; Yang, M. Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem. 2012, 134, 1601–1606. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Q.; Du, B.; Wu, D.; Li, H.; Yan, L.; Ma, H.; Zhang, Y. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. Bioelectron. 2013, 48, 224–229. [Google Scholar] [CrossRef]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Aptasensors: A review. J. Biomed. Nanotechnol. 2010, 6, 93–105. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Electrochemical aptasensors. Electroanalysis 2009, 21, 1237–1250. [Google Scholar] [CrossRef]
- Guo, W.; Sun, N.; Qin, X.; Pei, M.; Wang, L. A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. Biosens. Bioelectron. 2015, 74, 691–697. [Google Scholar] [CrossRef]
- Sharma, A.; Istamboulie, G.; Hayat, A.; Catanante, G.; Bhand, S.; Marty, J.L. Disposable and portable aptamer functionalized impedimetric sensorfor detection of kanamycin residue in milk sample. Sens. Actuators B 2017, 245, 507–515. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, G.; Liu, S.; Yu, A. Ultrasensitive electrochemical aptasensing of kanamycin antibiotic by enzymatic signal amplification with a horseradish peroxidase-functionalized gold nanoprobe. Sens. Actuators B 2018, 274, 1762–1767. [Google Scholar] [CrossRef]
- Li, F.; Wang, X.; Sun, X.; Guo, Y.; Zhao, W. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal. Chim. Acta 2018, 1033, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, H.; Zhang, H.; Chu, G.; Guo, Y.; Sun, X. Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens. Actuators B 2020, 304, 127367. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Z.; Guo, Q.; Zhao, J.; Ma, J.; Kang, Q.; Tang, Y.; Xue, Y.; Lou, X.; He, M. Signaling-probe displacement electrochemical aptamer-based sensor (SD-EAB) for detection of nanomolar Kanamycin A. Electrochim. Acta 2015, 182, 516–523. [Google Scholar] [CrossRef]
- Zeng, R.; Su, L.; Luo, Z.; Zhang, L.; Lu, M.; Tang, D. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Anal. Chim. Acta 2018, 1038, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, Z.; Li, F.; Shi, W.; Fu, C.; Yan, H.; Zhang, G. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance. Bioelectrochemistry 2019, 129, 270–277. [Google Scholar] [CrossRef]
- Yu, Z.; Han, X.; Li, F.; Tan, X.; Shi, W.; Fu, C.; Yan, H.; Zhang, G. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved. Anal. Bioanal. Chem. 2020, 412, 2391–2397. [Google Scholar] [CrossRef]
- Yu, J.; Tang, W.; Wang, F.; Zhang, F.; Wang, Q.; He, P. Simultaneous detection of streptomycin and kanamycin based on an all-solid-state potentiometric aptasensor array with a dual-internal calibration system. Sens. Actuators B 2020, 311, 127857. [Google Scholar] [CrossRef]
- Wang, J.; Lu, T.; Hu, Y.; Wang, X.; Wu, Y. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim. Acta A 2020, 226, 117651. [Google Scholar] [CrossRef]
- Ha, N.-R.; Jung, I.-P.; La, I.-J.; Jung, H.-S.; Yoon, M.-Y. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci. Rep. 2017, 7, 40305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, V.; Smolko, V.; Gorbatchuk, V.; Stoikov, I.; Evtugyn, G.; Hianik, T. DNA-polylactide modified biosensor for electrochemical determination of the DNA-drugs and aptamer-aflatoxin M1 interactions. Sensors 2019, 19, 4962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduini, F.; Cinti, S.; Mazzaracchio, V.; Scognamiglio, V.; Amine, A.; Moscone, D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens. Bioelectron. 2020, 156, 112033. [Google Scholar] [CrossRef]
- Silva, T.A.; Moraes, F.C.; Janegitz, B.C.; Fatibello-Filho, O. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017, 4571614. [Google Scholar] [CrossRef] [Green Version]
- Talarico, D.; Arduini, F.; Amine, A.; Cacciotti, I.; Moscone, D.; Palleschi, G. Screen-printed electrode modified with carbon black and chitosan: A novel platform for acetylcholinesterase biosensor development. Anal. Bioanal. Chem. 2016, 408, 7299–7309. [Google Scholar] [CrossRef]
- Nadifiyine, S.; Haddam, M.; Mandli, J.; Chadel, S.; Blanchard, C.C.; Marty, J.L.; Amine, A. Amperometric biosensor based on tyrosinase immobilized on to a carbon black paste electrode for phenol determination in olive oil. Anal. Lett. 2013, 46, 2705–2727. [Google Scholar] [CrossRef]
- Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. Biosens. Bioelectron. 2018, 117, 720–728. [Google Scholar] [CrossRef]
- Smolko, V.; Shurpik, D.; Evtugyn, V.; Stoikov, I.; Evtugyn, G. Organic acid and DNA sensing with electrochemical sensor based on carbon black and pillar [5] arene. Electroanalysis 2016, 28, 1391–1400. [Google Scholar] [CrossRef]
- Calegari, F.; de Souza, L.P.; Barsan, M.M.; Brett, C.M.A.; Marcolino-Junior, L.H.; Bergamini, M.F. Construction and evaluation of carbon black and poly (ethylene co-vinyl) acetate (EVA) composite electrodes for development of electrochemical (bio)sensors. Sens. Actuators B 2017, 253, 10–18. [Google Scholar] [CrossRef]
- Stoikov, I.I.; Yushkova, E.A.; Zhukov, A.Y.; Zharov, I.; Antipin, I.S.; Konovalov, A.I. The synthesis of p-tert-butyl thiacalix[4]arenes functionalized with secondary amide groups at the lower rim and their extraction properties and self-assembly into nanoscale aggregates. Tetrahedron 2008, 64, 7112–7121. [Google Scholar] [CrossRef]
- Kuzin, Y.I.; Gorbatchuk, V.V.; Rogov, A.M.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical properties of multilayered coatings implementing thiacalix[4]arenes with oligolactic fragments and DNA. Electroanalysis 2020, 32, 715–723. [Google Scholar] [CrossRef]
- Zhu, Y.; Chandra, P.; Song, K.-M.; Ban, C.; Shim, Y.-B. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Bard, J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: Chichester, UK, 2001; p. 850. [Google Scholar]
- Adams, R.N. Electrochemistry at Solid Electrodes; Marcel-Dekker: New York, NY, USA, 1969. [Google Scholar]
- Steel, A.B.; Herne, T.M.; Tarlov, M.J. Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 1998, 70, 4670–4677. [Google Scholar] [CrossRef]
- Porifreva, A.V.; Gorbatchuk, V.V.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A. Glassy carbon electrode modified with silver nanodendrites implemented in polylactide-thiacalix[4]arene copolymer for the electrochemical determination of tryptophan. Electroanalysis 2018, 30, 641–649. [Google Scholar] [CrossRef]
- Kulikova, T.N.; Porfireva, A.V.; Hianik, T.; Evtugyn, G.A. Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination. Electroanalysis 2019, 31, 1913–1924. [Google Scholar] [CrossRef]
- Ohno, R.; Ohnuki, H.; Wang, H.; Yokoyama, T.; Endo, H.; Tsuya, D.; Izumi, M. Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens. Bioelectron. 2013, 40, 422–426. [Google Scholar] [CrossRef]
- Yang, T.; Wang, S.; Jin, H.; Bao, W.; Huang, S.; Wang, J. An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sens. Actuators B 2013, 178, 310–315. [Google Scholar] [CrossRef]
- Uygun, Z.O.; Uygun, H.D.E. A short footnote: Circuit design for faradaic impedimetric sensors and biosensors. Sens. Actuators B 2014, 202, 448–453. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. Chem. Electron. Chem. 2019, 6, 989–1003. [Google Scholar] [CrossRef] [Green Version]
Layer Content | Rs(kΩ) | (Ret)1(kΩ) | CPE1(μF) | n1 | (Ret)2(kΩ) | CPE2(μF) | n2 |
---|---|---|---|---|---|---|---|
Aptasensor assembled on the CB/chitosan support | |||||||
CB/chitosan | 0.45 ± 0.05 | 0.71 ± 0.10 | 1.28 ± 0.25 | 0.94 | 1.67 ± 0.13 | 447 ± 10 | 0.92 |
+OLA-cone/aptamer (1:2) | 0.42 ± 0.06 | 0.60 ± 0.06 | 1.67 ± 0.30 | 0.93 | 6.9 ± 0.3 | 534 ± 10 | 0.90 |
+KANA 1.0 nM (20 min) | 0.42 ± 0.07 | 0.43 ± 0.03 | 1.41 ± 0.22 | 0.93 | 4.3 ± 0.2 | 556 ± 15 | 0.90 |
Aptasensor assembled on the PDDA support | |||||||
OLA-cone | 0.32 ± 0.07 | 2.9 ± 0.1 | 6.3 ± 0.1 | 0.94 | 12.1 ± 0.8 | 4.9 ± 0.2 | 0.90 |
+PDDA | 0.37 ± 0.07 | 0.64 ± 0.10 | 0.14 ± 0.03 | 0.94 | 5.0 ± 0.1 | 4.9 ± 0.2 | 0.85 |
+KANA 10 nM (20 min) | 0.35 ± 0.08 | 5.7 ± 0.4 | 0.52± 0.05 | 0.93 | 6.9 ± 0.2 | 4.9 ± 0.2 | 0.78 |
Modifier | Detection Principle | Concentration Range | LOD | Ref. |
---|---|---|---|---|
Graphene/nanoporous Au/Prussian blue/chitosan, anti-KANA antibodies | Amperometric detection of Prussian blue signal | 0.02–14 ng/mL | 6.31 pg/mL | [15] |
Graphene/nafion/thionine/Pt, anti-KANA antibodies | Amperometric detection of thionine signal | 0.01–12 ng/mL | 5.74 pg/mL | [16] |
Mesoporous Ag@Fe3O4 nanoparticles/thionine mixed graphene sheets, anti-KANA antibodies | Square wave detection of thionine signal | 0.05–16 ng/mL | 15 pg/mL | [17] |
Multiwalled carbon nanotubes, 1-hexyl-3-methylimidazolium hexafluorophosphate, and nanoporous PtTi, aptamer 5′-NH2-AGA TGG GGG TTG AGG CTA AGC CGA-3′ | EIS measurements | 0.05–100 ng/mL | 3.7 pg/mL | [20] |
Screen printed carbon electrodes modified by 4-carboxyphenyl, aptamer 5′-TGG GGG TTG AGG CTA AGC CGA-3′-NH2 | EIS measurements | 1.2–600 ng/mL | 0.11 ng/mL | [21] |
Aptamer-DNA duplex saturated with Methylene blue attached to Au nanoparticles on GCE, aptamer 5′-TGG GGG TTG AGG CTA AGC CGA-3′ | Methylene blue mediated horse radish peroxidase reaction, H2O2 reduction | 2.0 pg/mL to 100 ng/mL | 0.88 pg/mL | [22] |
Ordered mesoporous carbon/chitosan/Au nanoparticles, ferrocene labeled aptamer 5′-ACT TCT CGC AAG ATG GGG GTT GAG GCT AAG CCG AAT ACT CCA GT-Fc-3′) | Strand displacement strategy, ferrocene and ferricyanide signals measured with differential pulse voltammetry | 0.1 nM–4.0 μM | 0.036 nM (21 pg/mL) | [23] |
Pt electrode covered with Ag nanoparticles and covalently attached aptamer 5′-NH2-C6-AGA TGG GGG TTG AGG CTA AGC CGA-3′ | Electroluminescence signal of luminol oxidation | 0.5–100 ng/mL | 0.06 ng/mL | [24] |
Aptamer-DNA duplex with auxiliary strand labeled with ferrocene attached to the Au electrode via terminal thiol group. Capture aptamer: 5′-TGG GGG TTG AGG CTA AGC CGA GTC ACT AT-(CH2)3-SH | Strand displacement strategy, ferrocene signal measured with square wave voltammetry | 1 nM–10 mM | 1 nM (0.58 ng/mL) | [25] |
Au electrode modified with hairpin aptamer interacting with KANA, two-stage strand displacement and RK polymerase amplification with two auxiliary hairpin DNA sequences. Hairpin aptamer specific to KANA: 5′-TGG GGG TTG AGG CTA AGC CGA CTC AGA GAT CCA TAT GGA ACC CCC A-3′ | Measurement of the Methylene blue signal after its intercalation in the polymeric DNA by differential pulse voltammetry | 0.05 nM–200 pM | 36 fM(0.021 pg/mL) | [26] |
Au electrode modified with thiolated aptamer 5′-TGG GGG TTG AGG CTA AGC CGA-3′ hybridized with complementary DNA labeled with Methylene blue | Measurement of the Methylene blue signal after conformational changes of the aptamer bonded to KANA or the shift of labeled DNA closer to the electrode by differential pulse voltammetry | 0.2 nM–1.0 μM | 0.06 nM (35 pg/mL) | [27] |
Au electrode modified with thiolated aptamer 5′-MB-TGG GGG TTG AGG CTA AGC CGA-(CH2)6-SH-3′ and its lengthened and stem-loop analogs | Measurement of the Methylene blue signal after conformational changes of the aptamer bonded to KANA or the shift of labeled DNA closer to the electrode by differential pulse voltammetry | 1.0 nM–100 μM (best characteristics as presented from all the types of aptasensors considered) | 0.2 nM (0.11 ng/mL) | [28] |
Screen-printed electrode array modified with reduced graphene oxide and Au nanoparticles with attached aptamer 5′-SH-AGA TGG GGG TTG AGG CTA AGC CGA-3′ | Measurement of the open circuit potential with dual internal calibration | 10 pM–1 μM | 5.2 pM (3 pg/mL) | [29] |
GCE covered with CB/chitosan—OLA-cone and physically adsorbed aptamer | EIS measurements | 0.7–50 nM | 0.3 Nm (0.17 ng/mL) | This work |
Sample | Added (nM) | Found (nM) | Recovery (%) |
---|---|---|---|
Milk (3.2%) | 30 | 33 ± 2 | 110 |
70 | 74 ± 4 | 105 | |
Yogurt (2.4%) | 30 | 35 ± 5 | 117 |
70 | 65 ± 5 | 93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, T.; Gorbatchuk, V.; Stoikov, I.; Rogov, A.; Evtugyn, G.; Hianik, T. Impedimetric Determination of Kanamycin in Milk with Aptasensor Based on Carbon Black-Oligolactide Composite. Sensors 2020, 20, 4738. https://doi.org/10.3390/s20174738
Kulikova T, Gorbatchuk V, Stoikov I, Rogov A, Evtugyn G, Hianik T. Impedimetric Determination of Kanamycin in Milk with Aptasensor Based on Carbon Black-Oligolactide Composite. Sensors. 2020; 20(17):4738. https://doi.org/10.3390/s20174738
Chicago/Turabian StyleKulikova, Tatiana, Vladimir Gorbatchuk, Ivan Stoikov, Alexey Rogov, Gennady Evtugyn, and Tibor Hianik. 2020. "Impedimetric Determination of Kanamycin in Milk with Aptasensor Based on Carbon Black-Oligolactide Composite" Sensors 20, no. 17: 4738. https://doi.org/10.3390/s20174738
APA StyleKulikova, T., Gorbatchuk, V., Stoikov, I., Rogov, A., Evtugyn, G., & Hianik, T. (2020). Impedimetric Determination of Kanamycin in Milk with Aptasensor Based on Carbon Black-Oligolactide Composite. Sensors, 20(17), 4738. https://doi.org/10.3390/s20174738