Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020?
Abstract
:1. Introduction
Objectives
2. Use of Activity Trackers for Self-Monitoring of Physical Activity
2.1. Physical Activity: Definition and Recommendations
2.2. Why Is Physical Activity Important in the General Population and in Rheumatology Patients?
2.3. Lack of Physical Activity in the General Population and Patients with Musculoskeletal and Rheumatic Diseases
2.4. Wearable Activity Trackers to Promote Physical Activity
2.5. Accuracy of Activity Trackers
2.6. A Systematic Review Assessing Activity Trackers to Increase Physical Activity in Rheumatic Patients
2.7. Barriers and Facilitators to Physical Activity Should Be Addressed
3. Activity Trackers as Tools to Monitor Disease Activity in Chronic Rheumatic Diseases
3.1. Why Are Flares Important in Inflammatory Arthritis?
3.2. How to Assess Flares?
3.3. Detecting Flares by Activity Trackers: The ActConnect Study
3.4. The Main Results of ActConnect
3.4.1. Flares Were Frequent
3.4.2. Physical Activity Was Moderate
3.4.3. Link between Flares and Steps
3.4.4. Use of Machine Learning to Enable More Accurate Analysis
3.4.5. What Are the Practical Implications of Our Findings?
4. Limits of Activity Tracker in Clinical Practices
4.1. Limits of Activity Trackers to Self-Monitor Physical Activity
4.2. How to Manage Trackers in a Busy Clinic?
- −
- paradox of messaging: user acceptance and the psychological effect of a tracker: The objective for the medical community is to ensure remission of the disease and to make it as discreet as possible, with the least possible impact on quality of life. Wearing a dedicated medical device has an impact on the perception of the disease and can remind the patient of his or her condition [99];
- −
- healthcare agencies momentum: healthcare organizations need to develop an entirely new regulatory paradigm to design a framework for digital opportunities. Indeed, a standardized device would be produced after a long public process with numerous accreditations, and therefore with a delivery to patients of devices that are 2 or 3 years old [100];
- −
- trackers like a pill: today, most activity trackers rely on a smartphone as gateway. Beyond smartphone adoption, smartphone effective use is a challenge for part of the patients, and diversity of Bluetooth versions or core system versions across devices could be challenging. Meaning we should not underestimate the assistance required to help patient to pair the device to his smartphones or re-pair it if lost. Moreover, 5G (the fifth generation technology standard for cellular networks) low-power WAN, which is a type of wireless Wide Area Network designed to enable long-distance communications at low data rates, do not require any smartphone to operate. Using such networks would be a significant step in the generalized use of trackers in daily care allowing to prescribe trackers like pills [101].
4.3. The Patient in 2023: A 5 Wristband Owner?
4.3.1. Inspire and Share
4.3.2. Listen to Real-Life?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Risling, T.; Martinez, J.; Young, J.; Thorp-Froslie, N. Evaluating Patient Empowerment in Association with eHealth Technology: Scoping Review. J. Med. Internet Res. 2017, 19, e329. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The emerging field of mobile health. Sci. Transl. Med 2015, 7, 283rv3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenbaum, F. e-Health, social media, and rheumatology: Can they get along? Joint Bone Spine 2018, 85, 265–266. [Google Scholar] [CrossRef]
- Dixon, W.G.; Michaud, K. Using technology to support clinical care and research in rheumatoid arthritis. Curr. Opin. Rheumatol. 2018, 30, 276–281. [Google Scholar] [CrossRef]
- Gossec, L.; Kedra, J.; Servy, H.; Pandit, A.; Stones, S.; Berenbaum, F.; Finckh, A.; Baraliakos, X.; Stamm, T.A.; Gomez-Cabrero, D.; et al. EULAR points to consider for the use of big data in rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2020, 79, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics. Measurement 2020, 159, 107789. [Google Scholar] [CrossRef]
- Palmer, D.; El Miedany, Y. Shared decision making for patients living with inflammatory arthritis. Br. J. Nurs. 2016, 25, 31–35. [Google Scholar] [CrossRef]
- Chu, A.H.Y.; Ng, S.H.X.; Paknezhad, M.; Gauterin, A.; Koh, D.; Brown, M.S.; Müller-Riemenschneider, F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS ONE 2017, 12, e0172535. [Google Scholar] [CrossRef] [Green Version]
- European League against Rheumatism (EULAR) Taskforce 2017. RheumaMap: A Research Roadmap to Transform the Lives of People with Rheumatic and Musculoskeletal Diseases. Available online: https://www.eular.org/myUploadData/files/RheumaMap.pdf (accessed on 25 August 2020).
- Gossec, L.; Berenbaum, F.; Chauvin, P.; Lamiraud, K.; Russo-Marie, F.; Joubert, J.-M.; Saraux, A. Reporting of patient-perceived impact of rheumatoid arthritis and axial spondyloarthritis over 10 years: A systematic literature review. Rheumatology (Oxf.) 2014, 53, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Fenton, S.A.M.; Veldhuijzen van Zanten, J.J.C.S.; Duda, J.L.; Metsios, G.S.; Kitas, G.D. Sedentary behaviour in rheumatoid arthritis: Definition, measurement and implications for health. Rheumatology (Oxf.) 2018, 57, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, J.A.; Finan, P.H.; Zautra, A.J. Affective disturbance in rheumatoid arthritis: Psychological and disease-related pathways. Nat. Rev. Rheumatol. 2016, 12, 532–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Chehade, L.; Jaafar, Z.A.; El Masri, D.; Zmerly, H.; Kreidieh, D.; Tannir, H.; Itani, L.; El Ghoch, M. Lifestyle Modification in Rheumatoid Arthritis: Dietary and Physical Activity Recommendations Based on Evidence. Curr. Rheumatol. Rev. 2019, 15, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Grainger, R.; Townsley, H.; White, B.; Langlotz, T.; Taylor, W.J. Apps for People With Rheumatoid Arthritis to Monitor Their Disease Activity: A Review of Apps for Best Practice and Quality. JMIR Mhealth Uhealth 2017, 5, e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossec, L.; Fayet, F.; Soubrier, M.; Foissac, F.; Molto, A.; Richette, P.; Beauvais, C.; Ruyssen-Witrand, A.; Perdriger, A.; Chary-Valckenaere, I.; et al. Is self-assessment by patients of disease activity acceptable over the long term in rheumatoid arthritis? A 3-year follow-up of 771 patients. Rheumatology (Oxf.) 2019, 58, 1498–1499. [Google Scholar] [CrossRef]
- Van Riel, P.; Alten, R.; Combe, B.; Abdulganieva, D.; Bousquet, P.; Courtenay, M.; Curiale, C.; Gómez-Centeno, A.; Haugeberg, G.; Leeb, B.; et al. Improving inflammatory arthritis management through tighter monitoring of patients and the use of innovative electronic tools. RMD Open 2016, 2. [Google Scholar] [CrossRef]
- Singh, J.A.; Saag, K.G.; Bridges, S.L.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef]
- Van der Heijde, D.; Ramiro, S.; Landewé, R.; Baraliakos, X.; Van den Bosch, F.; Sepriano, A.; Regel, A.; Ciurea, A.; Dagfinrud, H.; Dougados, M.; et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 978–991. [Google Scholar] [CrossRef]
- Gossec, L.; Baraliakos, X.; Kerschbaumer, A.; de Wit, M.; McInnes, I.; Dougados, M.; Primdahl, J.; McGonagle, D.G.; Aletaha, D.; Balanescu, A.; et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 2020, 79, 700–712. [Google Scholar] [CrossRef]
- Jacquemin, C.; Servy, H.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; Hudry, C.; Mitrovic, S.; Fautrel, B.; Gossec, L. Physical Activity Assessment Using an Activity Tracker in Patients with Rheumatoid Arthritis and Axial Spondyloarthritis: Prospective Observational Study. JMIR mHealth uHealth 2018, 6, e1. [Google Scholar] [CrossRef]
- Wearable Electronics Market Size, Share and Industry Opportunity 2020. Available online: https://www.alliedmarketresearch.com/body-adapted-wearable-electronics-market (accessed on 21 July 2020).
- Haghi, M.; Thurow, K.; Stoll, R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc. Inform. Res. 2017, 23, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.; Hansen, M.; Fernandez-Luque, L.; Lau, A.Y.S. Self-Tracking, Social Media and Personal Health Records for Patient Empowered Self-Care. Contribution of the IMIA Social Media Working Group. Yearb. Med. Inform. 2012, 7, 16–24. [Google Scholar]
- Kataria, S.; Ravindran, V. Digital health: A new dimension in rheumatology patient care. Rheumatol. Int 2018, 38, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; Altenburg, T.M.; et al. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; 2010; ISBN 978-92-4-159997-9. Available online: https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf (accessed on 25 August 2020).
- Geenen, R.; Overman, C.L.; Christensen, R.; Åsenlöf, P.; Capela, S.; Huisinga, K.L.; Husebø, M.E.P.; Köke, A.J.A.; Paskins, Z.; Pitsillidou, I.A.; et al. EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.J.L.; Symmons, D.P.M.; McCarey, D.; Dijkmans, B.A.C.; Nicola, P.; Kvien, T.K.; McInnes, I.B.; Haentzschel, H.; Gonzalez-Gay, M.A.; Provan, S.; et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 2010, 69, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Zhang, H.; Ji, H.; Wang, C. Effects of home-based exercise intervention on health-related quality of life for patients with ankylosing spondylitis: A meta-analysis. Clin. Rheumatol. 2015, 34, 1737–1744. [Google Scholar] [CrossRef]
- Regnaux, J.-P.; Davergne, T.; Palazzo, C.; Roren, A.; Rannou, F.; Boutron, I.; Lefevre-Colau, M.-M. Exercise programmes for ankylosing spondylitis. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals. 2020, Licence: CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/gho/publications/world_health_statistics/2020/EN_WHS_2020_TOC.pdf?ua=1 (accessed on 25 August 2020).
- O’Dwyer, T.; Rafferty, T.; O’Shea, F.; Gissane, C.; Wilson, F. Physical activity guidelines: Is the message getting through to adults with rheumatic conditions? Rheumatology 2014, 53, 1812–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, J.; Smith Byrne, K.; Doherty, A.; Foster, C.; Rahimi, K.; Ramakrishnan, R.; Woodward, M.; Dwyer, T. Physical activity of UK adults with chronic disease: Cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK Biobank participants. Int. J. Epidemiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Mansi, S.; Milosavljevic, S.; Baxter, G.D.; Tumilty, S.; Hendrick, P. A systematic review of studies using pedometers as an intervention for musculoskeletal diseases. BMC Musculoskelet. Disord. 2014, 15, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, S.M.; Tully, M.A.; Boyd, A.; O’Connor, S.R.; Kerr, D.P.; O’Neill, S.M.; Delitto, A.; Bradbury, I.; Tudor-Locke, C.; Baxter, G.D.; et al. Pedometer-driven walking for chronic low back pain: A feasibility randomized controlled trial. Clin. J. Pain 2013, 29, 972–981. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, R.; Turicchi, J.; Beaulieu, K.; Scott, S.; Matu, J.; Deighton, K.; Finlayson, G.; Stubbs, J. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br. J. Sports Med. 2020, 54, 332–340. [Google Scholar] [CrossRef]
- Site Officiel Fitbit: Coachs Électroniques pour la Forme et le Sport, et Bien plus Encore. Available online: https://www.fitbit.com/fr/home (accessed on 21 July 2020).
- Fitness Trackers Market Size, Share and Growth Analysis | Forecast. Available online: https://www.alliedmarketresearch.com/fitness-tracker-market (accessed on 21 July 2020).
- Mercer, K.; Li, M.; Giangregorio, L.; Burns, C.; Grindrod, K. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis. JMIR Mhealth Uhealth 2016, 4, e40. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.S.; Asch, D.A.; Volpp, K.G. Wearable devices as facilitators, not drivers, of health behavior change. JAMA 2015, 313, 459–460. [Google Scholar] [CrossRef]
- Lyons, E.J.; Lewis, Z.H.; Mayrsohn, B.G.; Rowland, J.L. Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. J. Med. Internet Res. 2014, 16, e192. [Google Scholar] [CrossRef]
- Murray, E.; Hekler, E.B.; Andersson, G.; Collins, L.M.; Doherty, A.; Hollis, C.; Rivera, D.E.; West, R.; Wyatt, J.C. Evaluating Digital Health Interventions: Key Questions and Approaches. Am. J. Prev. Med. 2016, 51, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Schaller, A.; Rudolf, K.; Dejonghe, L.; Grieben, C.; Froboese, I. Influencing Factors on the Overestimation of Self-Reported Physical Activity: A Cross-Sectional Analysis of Low Back Pain Patients and Healthy Controls. Biomed. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Copeland, J.L.; Ashe, M.C.; Biddle, S.J.; Brown, W.J.; Buman, M.P.; Chastin, S.; Gardiner, P.A.; Inoue, S.; Jefferis, B.J.; Oka, K.; et al. Sedentary time in older adults: A critical review of measurement, associations with health, and interventions. Br. J. Sports Med. 2017, 51, 1539. [Google Scholar] [CrossRef] [Green Version]
- Eisele, A.; Schagg, D.; Krämer, L.V.; Bengel, J.; Göhner, W. Behaviour change techniques applied in interventions to enhance physical activity adherence in patients with chronic musculoskeletal conditions: A systematic review and meta-analysis. Patient Educ. Couns. 2019, 102, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Davergne, T.; Pallot, A.; Dechartres, A.; Fautrel, B.; Gossec, L. Use of wearable activity trackers to improve physical activity behavior in rheumatic and musculoskeletal diseases: A systematic review and meta-analysis. Arthritis Care Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Goode, A.P.; Hall, K.S.; Batch, B.C.; Huffman, K.M.; Hastings, S.N.; Allen, K.D.; Shaw, R.J.; Kanach, F.A.; McDuffie, J.R.; Kosinski, A.S.; et al. The Impact of Interventions that Integrate Accelerometers on Physical Activity and Weight Loss: A Systematic Review. Ann. Behav. Med. 2017, 51, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, Z.H.; Lyons, E.J.; Jarvis, J.M.; Baillargeon, J. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Ridgers, N.D.; McNarry, M.A.; Mackintosh, K.A. Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review. JMIR Mhealth Uhealth 2016, 4, e129. [Google Scholar] [CrossRef] [Green Version]
- De Vries, H.J.; Kooiman, T.J.M.; van Ittersum, M.W.; van Brussel, M.; de Groot, M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 2016, 24, 2078–2091. [Google Scholar] [CrossRef] [Green Version]
- Niedermann, K.; Nast, I.; Ciurea, A.; Vliet Vlieland, T.; van Bodegom-Vos, L. Barriers and facilitators of vigorous cardiorespiratory training in axial Spondyloarthritis: Surveys among patients, physiotherapists, rheumatologists. Arthritis Care Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mazières, B.; Thevenon, A.; Coudeyre, E.; Chevalier, X.; Revel, M.; Rannou, F. Adherence to, and results of, physical therapy programs in patients with hip or knee osteoarthritis. Development of French clinical practice guidelines. Joint Bone Spine 2008, 75, 589–596. [Google Scholar] [CrossRef]
- Hammer, N.M.; Midtgaard, J.; Hetland, M.L.; Krogh, N.S.; Esbensen, B.A. Physical activity behaviour in men with inflammatory joint disease: A cross-sectional register-based study. Rheumatology (Oxf.) 2018, 57, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Sechrist, K.R.; Walker, S.N.; Pender, N.J. Development and psychometric evaluation of the exercise benefits/barriers scale. Res. Nurs. Health 1987, 10, 357–365. [Google Scholar] [CrossRef]
- Gay, C.; Eschalier, B.; Levyckyj, C.; Bonnin, A.; Coudeyre, E. Motivators for and barriers to physical activity in people with knee osteoarthritis: A qualitative study. Joint Bone Spine 2018, 85, 481–486. [Google Scholar] [CrossRef]
- Coste, N.; Guiguet-Auclair, C.; Gerbaud, L.; Pereira, B.; Berland, P.; Gay, C.; Coudeyre, E. Perceived barriers to and facilitators of physical activity in people with knee osteoarthritis: Development of the Evaluation of the Perception of Physical Activity questionnaire. Ann. Phys. Rehabil. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Marcus, B.H.; Selby, V.C.; Niaura, R.S.; Rossi, J.S. Self-efficacy and the stages of exercise behavior change. Res. Q. Exerc. Sport 1992, 63, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Spencer, L.; Adams, T.B.; Malone, S.; Roy, L.; Yost, E. Applying the transtheoretical model to exercise: A systematic and comprehensive review of the literature. Health Promot. Pract. 2006, 7, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolen, J.S.; Breedveld, F.C.; Burmester, G.R.; Bykerk, V.; Dougados, M.; Emery, P.; Kvien, T.K.; Navarro-Compán, M.V.; Oliver, S.; Schoels, M.; et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 2016, 75, 3–15. [Google Scholar] [CrossRef]
- Alten, R.; Pohl, C.; Choy, E.H.; Christensen, R.; Furst, D.E.; Hewlett, S.E.; Leong, A.; May, J.E.; Sanderson, T.C.; Strand, V.; et al. Developing a construct to evaluate flares in rheumatoid arthritis: A conceptual report of the OMERACT RA Flare Definition Working Group. J. Rheumatol. 2011, 38, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, C.; Molto, A.; Servy, H.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; Hudry, C.; Mitrovic, S.; Granger, B.; Fautrel, B.; et al. Flares assessed weekly in patients with rheumatoid arthritis or axial spondyloarthritis and relationship with physical activity measured using a connected activity tracker: A 3-month study. RMD Open 2017, 3, e000434. [Google Scholar] [CrossRef] [Green Version]
- Bykerk, V.P.; Shadick, N.; Frits, M.; Bingham, C.O.; Jeffery, I.; Iannaccone, C.; Weinblatt, M.; Solomon, D.H. Flares in rheumatoid arthritis: Frequency and management. A report from the BRASS registry. J. Rheumatol. 2014, 41, 227–234. [Google Scholar] [CrossRef]
- Bykerk, V.P.; Bingham, C.O.; Choy, E.H.; Lin, D.; Alten, R.; Christensen, R.; Furst, D.E.; Hewlett, S.; Leong, A.; March, L.; et al. Identifying flares in rheumatoid arthritis: Reliability and construct validation of the OMERACT RA Flare Core Domain Set. RMD Open 2016, 2, e000225. [Google Scholar] [CrossRef] [PubMed]
- Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; et al. Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology. Arthritis Care Res. (Hoboken) 2019, 71, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Hewlett, S.; Sanderson, T.; May, J.; Alten, R.; Bingham, C.O.; Cross, M.; March, L.; Pohl, C.; Woodworth, T.; Bartlett, S.J. “I’m hurting, I want to kill myself”: Rheumatoid arthritis flare is more than a high joint count-an international patient perspective on flare where medical help is sought. Rheumatology (Oxf. Engl.) 2012, 51, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossec, L.; Portier, A.; Landewé, R.; Etcheto, A.; Navarro-Compán, V.; Kroon, F.; van der Heijde, D.; Dougados, M. Preliminary definitions of ‘flare’ in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: An ASAS initiative. Ann. Rheum. Dis. 2016, 75, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Markusse, I.M.; Dirven, L.; Gerards, A.H.; van Groenendael, J.H.L.M.; Ronday, H.K.; Kerstens, P.J.S.M.; Lems, W.F.; Huizinga, T.W.J.; Allaart, C.F. Disease flares in rheumatoid arthritis are associated with joint damage progression and disability: 10-year results from the BeSt study. Arthritis Res. Ther. 2015, 17, 232. [Google Scholar] [CrossRef] [Green Version]
- Ometto, F.; Raffeiner, B.; Bernardi, L.; Bostsios, C.; Veronese, N.; Punzi, L.; Doria, A. Self-reported flares are predictors of radiographic progression in rheumatoid arthritis patients in 28-joint disease activity score remission: A 24-month observational study. Arthritis Res. Ther. 2016, 18, 89. [Google Scholar] [CrossRef]
- Lillegraven, S.; Prince, F.H.M.; Shadick, N.A.; Bykerk, V.P.; Lu, B.; Frits, M.L.; Iannaccone, C.K.; Kvien, T.K.; Haavardsholm, E.A.; Weinblatt, M.E.; et al. Remission and radiographic outcome in rheumatoid arthritis: Application of the 2011 ACR/EULAR remission criteria in an observational cohort. Ann. Rheum. Dis. 2012, 71, 681–686. [Google Scholar] [CrossRef]
- Van Gestel, A.M.; Prevoo, M.L.; van ’t Hof, M.A.; van Rijswijk, M.H.; van de Putte, L.B.; van Riel, P.L. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League against Rheumatism Criteria. Arthritis Rheum. 1996, 39, 34–40. [Google Scholar] [CrossRef]
- Molto, A.; Gossec, L.; Meghnathi, B.; Landewé, R.B.M.; van der Heijde, D.; Atagunduz, P.; Elzorkany, B.K.; Akkoc, N.; Kiltz, U.; Gu, J.; et al. An Assessment in SpondyloArthritis International Society (ASAS)-endorsed definition of clinically important worsening in axial spondyloarthritis based on ASDAS. Ann. Rheum. Dis. 2018, 77, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Fautrel, B.; Morel, J.; Berthelot, J.-M.; Constantin, A.; De Bandt, M.; Gaudin, P.; Maillefert, J.-F.; Meyer, O.; Pham, T.; Saraux, A.; et al. Validation of FLARE-RA, a Self-Administered Tool to Detect Recent or Current Rheumatoid Arthritis Flare. Arthritis Rheumatol. (Hoboken N.J.) 2017, 69, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Gossec, L.; Cantagrel, A.; Soubrier, M.; Berthelot, J.-M.; Joubert, J.-M.; Combe, B.; Czarlewski, W.; Wendling, D.; Dernis, E.; Grange, L.; et al. An e-health interactive self-assessment website (Sanoia®) in rheumatoid arthritis. A 12-month randomized controlled trial in 320 patients. Joint Bone Spine 2018, 85, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, J.-M.; De Bandt, M.; Morel, J.; Benatig, F.; Constantin, A.; Gaudin, P.; Le Loet, X.; Maillefert, J.-F.; Meyer, O.; Pham, T.; et al. A tool to identify recent or present rheumatoid arthritis flare from both patient and physician perspectives: The “FLARE” instrument. Ann. Rheum. Dis. 2012, 71, 1110–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R-Packages—Revision 7878: /trunk/nlme. Available online: https://svn.r-project.org/R-packages/trunk/nlme/ (accessed on 13 August 2020).
- Kedra, J.; Gossec, L. Big Data and artificial intelligence: Will they change our practice? Joint Bone Spine 2020, 87, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.; Mathai, A.; Parikh, S.; Chandra Sekhar, G.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Richter, J.; Kampling, C.; Schneider, M. Electronic Patient-Reported Outcome Measures (ePROMs) in Rheumatology. In Patient Reported Outcome Measures in Rheumatic Diseases; El Miedany, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 371–388. ISBN 978-3-319-32851-5. [Google Scholar]
- Kedra, J.; Radstake, T.; Pandit, A.; Baraliakos, X.; Berenbaum, F.; Finckh, A.; Fautrel, B.; Stamm, T.A.; Gomez-Cabrero, D.; Pristipino, C.; et al. Current status of use of big data and artificial intelligence in RMDs: A systematic literature review informing EULAR recommendations. RMD Open 2019, 5, e001004. [Google Scholar] [CrossRef]
- Shih, P.; Han, K.; Shehan Poole, E.; Rosson, M.B.; Carroll, J. Use and Adoption Challenges of Wearable Activity Trackers. In Proceedings of the iConference. Available online: http://hdl.handle.net/2142/73649 (accessed on 15 March 2015).
- Abhishek, A.; Doherty, M. Education and non-pharmacological approaches for gout. Rheumatology (Oxf.) 2018, 57, i51–i58. [Google Scholar] [CrossRef] [Green Version]
- Latif, Z.P.; Nakafero, G.; Jenkins, W.; Doherty, M.; Abhishek, A. Implication of nurse intervention on engagement with urate-lowering drugs: A qualitative study of participants in a RCT of nurse led care. Joint Bone Spine 2019, 86, 357–362. [Google Scholar] [CrossRef]
- Li, L.; Sayre, E.C.; Grewal, N.; Chien, J.; Noonan, G.; Falck, R.; Best, J.; Liu-Ambrose, T.; Hoens, A.; Gray, V.; et al. Efficacy of a Wearable-Enabled Physical Activity Counselling Program for People with Knee Osteoarthritis [abstract]. Arthritis Rheumatol. 2017, 69 (Suppl. 10). [Google Scholar]
- Talbot, L.; Jm, G.; Tn, H.; Ej, M. A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: A preliminary study. J. Am. Geriatr. Soc. 2003, 51, 387–392. [Google Scholar] [CrossRef]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.R.; Ainsworth, B.E.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; King, G.A. Validity of four motion sensors in measuring moderate intensity physical activity. Med. Sci. Sports Exerc. 2000, 32, S471–S480. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009, 105, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Batterham, R.W.; Hawkins, M.; Collins, P.A.; Buchbinder, R.; Osborne, R.H. Health literacy: Applying current concepts to improve health services and reduce health inequalities. Public Health 2016, 132, 3–12. [Google Scholar] [CrossRef]
- Whitehead, M. Definition of physical literacy and clarification of related issues. J. Sport Sci. Phys. Educ. 2013, 65, 28–33. [Google Scholar]
- Valatkaitytė, V.; Česnaitienė, V.J. Relationship between Health Literacy, Physical Activity, Motivation and Barriers of People Aged 30–50 Years. Balt. J. Sport Health Sci. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Morony, S.; Lamph, E.; Muscat, D.; Nutbeam, D.; Dhillon, H.M.; Shepherd, H.; Smith, S.; Khan, A.; Osborne, J.; Meshreky, W.; et al. Improving health literacy through adult basic education in Australia. Health Promot. Int. 2018, 33, 867–877. [Google Scholar] [CrossRef] [Green Version]
- Mahloko, L.; Adebesin, F. A Systematic Literature Review of the Factors that Influence the Accuracy of Consumer Wearable Health Device Data. In Responsible Design, Implementation and Use of Information and Communication Technology; Hattingh, M., Matthee, M., Smuts, H., Pappas, I., Dwivedi, Y., Mäntymäki, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 96–107. [Google Scholar] [CrossRef] [Green Version]
- Elsaleh, T.; Enshaeifar, S.; Rezvani, R.; Acton, S.T.; Janeiko, V.; Bermudez-Edo, M. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services. Sensors 2020, 20, 953. [Google Scholar] [CrossRef] [Green Version]
- North, F.; Chaudhry, R. Apple HealthKit and Health App: Patient Uptake and Barriers in Primary Care. Telemed. e-Health 2016, 22, 608–613. [Google Scholar] [CrossRef]
- Danesi, G.; Pralong, M.; Panese, F.; Burnand, B.; Grossen, M. Techno-social reconfigurations in diabetes (self-) care. Soc. Stud. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Commissioner, O.; Statement from FDA Commissioner Scott Gottlieb, M.D on Steps toward a New, Tailored Review Framework for Artificial Intelligence-Based Medical Devices. Available online: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-steps-toward-new-tailored-review-framework-artificial (accessed on 7 July 2020).
- Rodrigues, J.J.P.C.; Solic, P.; Alberti, A.M. LoRaWAN—low power WAN protocol for internet of things: A review and opportunities. In Proceedings of the 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12 July 2017; pp. 1–6. [Google Scholar]
- Newman, D.; Tong, M.; Levine, E.; Kishore, S. Prevalence of multiple chronic conditions by U.S. state and territory, 2017. PLoS ONE 2020, 15, e0232346. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; Boire, G.; Haraoui, B.; Keystone, E.; Pope, J.; Jamal, S.; Tin, D.; Thorne, C.; Bykerk, V.P. Self-reported comorbidity is common in early inflammatory arthritis and associated with poorer function and worse arthritis disease outcomes: Results from the Canadian Early Arthritis Cohort. Rheumatology (Oxf.) 2016, 55, 1751–1762. [Google Scholar] [CrossRef] [Green Version]
- Maeng, D.D.; Martsolf, G.R.; Scanlon, D.P.; Christianson, J.B. Care Coordination for the Chronically Ill: Understanding the Patient’s Perspective. Health Serv. Res. 2012, 47, 1960–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, I.B.; Armstrong, D.; Bergenstal, R.M.; Buckingham, B.; Childs, B.P.; Clarke, W.L.; Peters, A.; Wolpert, H. Clinical Application of Emerging Sensor Technologies in Diabetes Management: Consensus Guidelines for Continuous Glucose Monitoring (CGM). Diabetes Technol. Ther. 2008, 10, 232–246. [Google Scholar] [CrossRef]
- Garg, S.K.; Shah, V. Closed-loop insulin delivery systems for patients with diabetes. Lancet Digit. Health 2019, 1, e2–e3. [Google Scholar] [CrossRef] [Green Version]
- Maor, E.; Sara, J.D.; Orbelo, D.M.; Lerman, L.O.; Levanon, Y.; Lerman, A. Voice Signal Characteristics Are Independently Associated with Coronary Artery Disease. Mayo Clin. Proc. 2018, 93, 840–847. [Google Scholar] [CrossRef]
- Wu, C. Non-Invasive Detection of Moving and Stationary Human with WiFi.|BibSonomy. IEEE J. Sel. Areas Commun. 2015, 33, 2329–2342. [Google Scholar] [CrossRef]
Rheumatoid Arthritis | Spondyloarthritis |
---|---|
|
|
Mode of Administration: |
|
Focus on Increase of Inflammation: |
|
Focus on Life Changes: |
|
Number of Weeks | Flare According to the Patient (N = 920 Weeks) | No Patient-Reported Flare (N = 3110 Weeks) |
---|---|---|
Flare According to the Modelization by Machine-Learning | 880 | 104 |
No Flare According to the Modelization | 40 | 3006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davergne, T.; Rakotozafiarison, A.; Servy, H.; Gossec, L. Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020? Sensors 2020, 20, 4797. https://doi.org/10.3390/s20174797
Davergne T, Rakotozafiarison A, Servy H, Gossec L. Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020? Sensors. 2020; 20(17):4797. https://doi.org/10.3390/s20174797
Chicago/Turabian StyleDavergne, Thomas, Antsa Rakotozafiarison, Hervé Servy, and Laure Gossec. 2020. "Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020?" Sensors 20, no. 17: 4797. https://doi.org/10.3390/s20174797
APA StyleDavergne, T., Rakotozafiarison, A., Servy, H., & Gossec, L. (2020). Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020? Sensors, 20(17), 4797. https://doi.org/10.3390/s20174797