Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection Methods
2.3. Coordinate System Definitions
- Sensor coordinate systems are non-changing, orthonormal, local reference frames that are embedded in each wireless sensor. The three orthonormal axes (ilocal, jlocal, klocal) that define the coordinate system lie parallel to the rectangular casing of the sensor with the origin located at the casing’s center. Each sensor measures and records data relative to its own local coordinate system.
- The global coordinate system is a non-changing, orthonormal, inertial reference frame that is common for all sensors. The three orthonormal axes (Iglobal, Jglobal, Kglobal) are defined by the directions of the Earth’s magnetic north (Iglobal) and gravity (Kglobal). Data recorded in a sensor coordinate system data can be mapped to the global coordinate system using quaternion operators.
- Body segment coordinate systems are non-changing, orthonormal, anatomically relevant, local coordinate systems that are specific to a given body segment and are defined by body-fixed axes. These coordinate systems are also commonly referred to as “anatomical segment frames” in the literature. The orthonormal body-fixed axes (L-axis, F-axis, T-axis) are defined in accordance with the specific anatomy of the body segment [54,55]. The l (longitudinal) axis coincides with the body segment’s longitudinal axis and is inferosuperiorly oriented. The f (flexion) axis is mediolaterally orientated, coinciding with the body segment axis about which flexion/extension occurs. The t (third) axis is the third body-fixed axis defined by the cross-product l × f. When using camera-based motion capture systems, these axes are “embedded” in body segments by incorporating positional data of numerous anatomical markers. However, for sensor-based systems, a single sensor on a body segment does not provide sufficient anatomical information to embed the coordinate system in anatomical based coordinates and therefore does not directly correspond with International Society of Biomechanics (ISB) recommended segment frames.
- Joint coordinate systems are changing, joint specific coordinate systems that are defined by the relative orientation between two neighboring body segments. The unit vectors that define these coordinate systems (denoted by e1, e2, e3) are defined by the body-fixed axes of the two neighboring segments. Joint coordinate systems are not necessarily orthogonal.
2.4. Coordinate System Transformations
2.5. Functional Calibration
2.6. Motion Intensity
2.7. Joint Orientation
3. Results
3.1. Motion Intensity
3.2. Joint Orientation
4. Discussion
4.1. Novel Methods for Measuring Hip Motion in the Natural Environment
4.2. The Importance of Functional Calibration Procedures
4.3. Magnetic Field Disturbances Reduce MIMU Accuracy
4.4. Joint Angle Time Series Data
4.5. Statics Periods May Be Susceptible to Errors
4.6. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morrow, M.M.B.; Lowndes, B.R.; Fortune, E.; Kaufman, K.R.; Hallbeck, M.S. Validation of inertial measurement units for upper body kinematics. J. Appl. Biomech. 2017, 33, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Kirking, B.; El-Gohary, M.; Kwon, Y. The feasibility of shoulder motion tracking during activities of daily living using inertial measurement units. Gait Posture 2016, 49, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Cutti, A.G.; Ferrari, A.; Garofalo, P.; Raggi, M.; Cappello, A.; Ferrari, A. ‘Outwalk’: A protocol for clinical gait analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 2009, 48, 17. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.M.; Aissaoui, R.; Aminian, K. Ambulatory measurement of 3D knee joint angle. J. Biomech. 2008, 41, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, K.J.; Kamnik, R.; O’Keeffe, D.T.; Lyons, G.M. An inertial and magnetic sensor based technique for joint angle measurement. J. Biomech. 2007, 40, 2604–2611. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 2008, 28, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, J.C.; Scholtes, V.A.; Harlaar, J. Evaluation of clinical spasticity assessment in Cerebral palsy using inertial sensors. Gait Posture 2009, 30, 138–143. [Google Scholar] [CrossRef]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS ONE 2019, 14, e0213064. [Google Scholar] [CrossRef] [Green Version]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. Validation of functional calibration and strap-down joint drift correction for computing 3D joint angles of knee, hip, and trunk in alpine skiing. PLoS ONE 2017, 12, e0181446. [Google Scholar] [CrossRef]
- Horenstein, R.E.; Lewis, C.L.; Yan, S.; Halverstadt, A.; Shefelbine, S.J. Validation of magneto-inertial measuring units for measuring hip joint angles. J. Biomech. 2019, 91, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, E.; Guillon, P.; Camomilla, V.; Pillet, H.; Skalli, W.; Cappozzo, A. Trunk inclination estimate during the sprint start using an inertial measurement unit: A validation study. J. Appl. Biomech. 2013, 29, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomi, A.G.; Goris, A.H.C.; Yin, B.; Westerterp, K.R. Detection of type, duration, and intensity of physical activity using an accelerometer. Med. Sci. Sports Exerc. 2009, 41, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. A system to measure the kinematics during the entire ski jump sequence using inertial sensors. J. Biomech. 2013, 46, 56–62. [Google Scholar] [CrossRef]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. An inertial sensor-based method for estimating the athlete’s relative joint center positions and center of mass kinematics in alpine ski racing. Front. Physiol. 2017, 8, 850. [Google Scholar] [CrossRef]
- Nagahara, R.; Kameda, M.; Neville, J.; Morin, J.-B. Inertial measurement unit-based hip flexion test as an indicator of sprint performance. J. Sports Sci. 2020, 38, 53–61. [Google Scholar] [CrossRef]
- De Ruiter, C.J.; van Dieën, J.H. Stride and Step Length Obtained with Inertial Measurement Units during Maximal Sprint Acceleration. Sports 2019, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Wik, E.H.; Luteberget, L.S.; Spencer, M. Activity Profiles in International Women’s Team Handball Using PlayerLoad. Int. J. Sports Physiol. Perform. 2017, 12, 934–942. [Google Scholar] [CrossRef]
- Towards a Wearable Device for Skill Assessment and Skill Acquisition of a Tennis Player during the First Serve: Sports Technology: Volume 2, No 3–4. Available online: https://www-tandfonline-com.ezproxy.neu.edu/doi/abs/10.1080/19346182.2009.9648510 (accessed on 12 May 2020).
- Hettiarachchi, C.; Kodithuwakku, J.; Manamperi, B.; Ifham, A.; Silva, P. A Wearable System to Analyze the Human Arm for Predicting Injuries Due to Throwing. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3297–3301. [Google Scholar]
- Rawashdeh, S.A.; Rafeldt, D.A.; Uhl, T.L. Wearable IMU for Shoulder Injury Prevention in Overhead Sports. Sensors 2016, 16, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heishman, A.; Peak, K.; Miller, R.; Brown, B.; Daub, B.; Freitas, E.; Bemben, M. Associations Between Two Athlete Monitoring Systems Used to Quantify External Training Loads in Basketball Players. Sports 2020, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J. Sports Sci. 2016, 34, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Rowlands, D.D.; James, D.A. Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Eng. 2010, 12, 179–188. [Google Scholar] [CrossRef]
- Chardonnens, J.; Favre, J.; Le Callennec, B.; Cuendet, F.; Gremion, G.; Aminian, K. Automatic measurement of key ski jumping phases and temporal events with a wearable system. J. Sports Sci. 2012, 30, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Perianu, R.M.; Thomas, P.; Perianu, M.M.; Havinga, P.J.M.; Taylor, S.; Begg, R.; Palaniswami, M.; Rouffet, D. A Performance Analysis of a Wireless Body-Area Network Monitoring System for Professional Cycling. Pers. Ubiquit. Comput. 2013, 17, 197–209. [Google Scholar] [CrossRef]
- Strohrmann, C.; Harms, H.; Kappeler-Setz, C.; Tröster, G. Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 983–990. [Google Scholar] [CrossRef]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular control adaptations in elite athletes: The case of top level karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. [Google Scholar] [CrossRef]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T.M. Ambulatory measurement of arm orientation. J. Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef]
- Cockcroft, J.; Muller, J.H.; Scheffer, C. A Novel Complimentary Filter for Tracking Hip Angles During Cycling Using Wireless Inertial Sensors and Dynamic Acceleration Estimation. IEEE Sens. J. 2014, 14, 2864–2871. [Google Scholar] [CrossRef]
- Palmer, A.; Fernquest, S.; Gimpel, M.; Birchall, R.; Judge, A.; Broomfield, J.; Newton, J.; Wotherspoon, M.; Carr, A.; Glyn-Jones, S. Physical activity during adolescence and the development of cam morphology: A cross-sectional cohort study of 210 individuals. Br. J. Sports Med. 2018, 52, 601–610. [Google Scholar] [CrossRef]
- Agricola, R.; Bessems, J.H.J.M.; Ginai, A.Z.; Heijboer, M.P.; van der Heijden, R.A.; Verhaar, J.A.N.; Weinans, H.; Waarsing, J.H. The Development of Cam-Type Deformity in Adolescent and Young Male Soccer Players. Am. J. Sports Med. 2012, 40, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Agricola, R.; Heijboer, M.P.; Ginai, A.Z.; Roels, P.; Zadpoor, A.A.; Verhaar, J.A.N.; Weinans, H.; Waarsing, J.H. A Cam Deformity Is Gradually Acquired During Skeletal Maturation in Adolescent and Young Male Soccer Players: A Prospective Study with Minimum 2-Year Follow-up. Am. J. Sports Med. 2014, 42, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Lahner, M.; von Schulze Pellengahr, C.; Walter, P.A.; Lukas, C.; Falarzik, A.; Daniilidis, K.; von Engelhardt, L.V.; Abraham, C.; Hennig, E.M.; Hagen, M. Biomechanical and functional indicators in male semiprofessional soccer players with increased hip alpha angles vs. amateur soccer players. BMC Musculoskelet. Disord. 2014, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, I.; Weir, A.; Langhout, R.; Waarsing, J.H.; Stubbe, J.; Kerkhoffs, G.; Agricola, R. The relationship between the frequency of football practice during skeletal growth and the presence of a cam deformity in adult elite football players. Br. J. Sports Med. 2015, 49, 630–634. [Google Scholar] [CrossRef]
- Johnson, A.C.; Shaman, M.A.; Ryan, T.G. Femoroacetabular Impingement in Former High-Level Youth Soccer Players. Am. J. Sports Med. 2012, 40, 1342–1346. [Google Scholar] [CrossRef]
- Gerhardt, M.B.; Romero, A.A.; Silvers, H.J.; Harris, D.J.; Watanabe, D.; Mandelbaum, B.R. The prevalence of radiographic hip abnormalities in elite soccer players. Am. J. Sports Med. 2012, 40, 584–588. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Ferner, F.; Noble, P.C.; Santore, R.F.; Werlen, S.; Mamisch, T.C. The Cam-type Deformity of the Proximal Femur Arises in Childhood in Response to Vigorous Sporting Activity. Clin. Orthop. Relat. Res. 2011, 469, 3229–3240. [Google Scholar] [CrossRef] [Green Version]
- Siebenrock, K.A.; Behning, A.; Mamisch, T.C.; Schwab, J.M. Growth Plate Alteration Precedes Cam-type Deformity in Elite Basketball Players. Clin. Orthop. Relat. Res. 2013, 471, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Philippon, M.J.; Ho, C.P.; Briggs, K.K.; Stull, J.; LaPrade, R.F. Prevalence of Increased Alpha Angles as a Measure of Cam-Type Femoroacetabular Impingement in Youth Ice Hockey Players. Am. J. Sports Med. 2013, 41, 1357–1362. [Google Scholar] [CrossRef]
- Lerebours, F.; Robertson, W.; Neri, B.; Schulz, B.; Youm, T.; Limpisvasti, O. Prevalence of Cam-Type Morphology in Elite Ice Hockey Players. Am. J. Sports Med. 2016, 44, 1024–1030. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Kaschka, I.; Frauchiger, L.; Werlen, S.; Schwab, J.M. Prevalence of Cam-Type Deformity and Hip Pain in Elite Ice Hockey Players Before and After the End of Growth. Am. J. Sports Med. 2013, 41, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Bizzini, M.; Notzli, H.P.; Maffiuletti, N.A. Femoroacetabular Impingement in Professional Ice Hockey Players: A Case Series of 5 Athletes after Open Surgical Decompression of the Hip. Am. J. Sports Med. 2007, 35, 1955–1959. [Google Scholar] [CrossRef] [PubMed]
- Nawabi, D.H.; Bedi, A.; Tibor, L.M.; Magennis, E.; Kelly, B.T. The demographic characteristics of high-level and recreational athletes undergoing hip arthroscopy for femoroacetabular impingement: A sports-specific analysis. Arthroscopy 2014, 30, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.W.; Bixby, S.; Yen, Y.-M.; Nasreddine, A.Y.; Kocher, M.S. The relationship between cam lesion and physis in skeletally immature patients. J. Pediatr. Orthop. 2014, 34, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Van Klij, P.; Heijboer, M.P.; Ginai, A.Z.; Verhaar, J.A.N.; Waarsing, J.H.; Agricola, R. Cam morphology in young male football players mostly develops before proximal femoral growth plate closure: A prospective study with 5-year follow-up. Br. J. Sports Med. 2018. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Wahab, K.H.A.; Werlen, S.; Kalhor, M.; Leunig, M.; Ganz, R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin. Orthop. Relat. Res. 2004, 418, 54–60. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Schwab, J.M. The Cam-Type Deformity—What Is It: SCFE, Osteophyte, or a New Disease? J. Pediatr. Orthop. 2013, 33, S121–S125. [Google Scholar] [CrossRef]
- Whiteside, D.; Deneweth, J.M.; Bedi, A.; Zernicke, R.F.; Goulet, G.C. Femoroacetabular Impingement in Elite Ice Hockey Goaltenders: Etiological Implications of On-Ice Hip Mechanics. Am. J. Sports Med. 2015, 43, 1689–1697. [Google Scholar] [CrossRef]
- Sink, E.L.; Gralla, J.; Ryba, A.; Dayton, M. Clinical Presentation of Femoroacetabular Impingement in Adolescents. J. Pediatric. Orthop. 2008, 28, 806–811. [Google Scholar] [CrossRef]
- Stull, J.D.; Philippon, M.J.; LaPrade, R.F. “At-Risk” Positioning and Hip Biomechanics of the Peewee Ice Hockey Sprint Start. Am. J. Sports Med. 2011, 39, 29–35. [Google Scholar] [CrossRef]
- Lee, C.B.; Spencer, H.T.; Nygaard, K.F. Femoral cam deformity due to anterior capsular force: A theoretical model with MRI and cadaveric correlation. J. Orthop. 2016, 13, 331–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Cole, G.K.; Nigg, B.M.; Ronsky, J.L.; Yeadon, M.R. Application of the joint coordinate system to three-dimensional joint attitude and movement representation: A standardization proposal. J. Biomech. Eng. 1993, 115, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Tadano, S.; Takeda, R.; Miyagawa, H.; Tadano, S.; Takeda, R.; Miyagawa, H. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. Sensors 2013, 13, 9321–9343. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. Spatial resolution in plantar pressure measurement revisited. J. Biomech. 2012, 45, 2116–2124. [Google Scholar] [CrossRef]
- Turley, G.A.; Williams, M.A.; Wellings, R.M.; Griffin, D.R. Evaluation of range of motion restriction within the hip joint. Med. Biol. Eng. Comput. 2013, 51, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.D.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Crowell, R.D.; Cummings, G.S.; Walker, J.R.; Tillman, L.J. Intratester and intertester reliability and validity of measures of innominate bone inclination. J. Orthop. Sports Phys. 1994, 20, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.; Whittle, M.W. The effects of pelvic movement on lumbar lordosis in the standing position. J. Orthop. Sports Phys. 1996, 24, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.Z.; Fowers, C.A.; Yuh, R.T.; Gebhart, J.J.; Salata, M.J.; Liu, R.W. Decreasing pelvic incidence is associated with greater risk of cam morphology. Bone Jt. Res. 2016, 5, 387–392. [Google Scholar] [CrossRef]
- Bachmann, E.R.; Yun, X.; Peterson, C.W. An investigation of the effects of magnetic variations on inertial/magnetic orientation sensors. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 2, pp. 1115–1122. [Google Scholar]
- De Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Nepple, J.J.; Vigdorchik, J.M.; Clohisy, J.C. What Is the Association Between Sports Participation and the Development of Proximal Femoral Cam Deformity?: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2015, 43, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Roetenberg, D.; Luinge, H.J.; Baten, C.T.M.; Veltink, P.H. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 395–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [Google Scholar] [CrossRef]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: Accuracy assessment in manual and locomotion tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [Green Version]
- Takeda, R.; Lisco, G.; Fujisawa, T.; Gastaldi, L.; Tohyama, H.; Tadano, S. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Sensors 2014, 14, 23230–23247. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Shefelbine, S.J.; Gutierrez-Farewik, E.M. Effect of growth plate geometry and growth direction on prediction of proximal femoral morphology. J. Biomech. 2016, 49, 1613–1619. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.R.; Orr, T.E.; Fyhrie, D.P.; Schurman, D.J. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin. Orthop. Relat. Res. 1987, 219, 237–250. [Google Scholar] [CrossRef]
- Sadeghian, S.M.; Lewis, C.L.; Shefelbine, S.J. Predicting growth plate orientation with altered hip loading: Potential cause of cam morphology. Biomech. Model. Mechanobiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Carter, D.R. A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny. Anat. Embryol. 1990, 181, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Shefelbine, S.J.; Carter, D.R. Mechanobiological Predictions of Femoral Anteversion in Cerebral Palsy. Ann. Biomed. Eng. 2004, 32, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Roels, P.; Agricola, R.; Oei, E.H.; Weinans, H.; Campoli, G.; Zadpoor, A.A. Mechanical factors explain development of cam-type deformity. Osteoarthr. Cartil. 2014, 22, 2074–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Number of Participants | Age (Years) | Organized Sport Participation (Hours/Week) |
---|---|---|---|
Athletes | n = 7 | 10.2 ± 1.28 | 8.46 ± 1.64 |
Controls | n = 7 | 9.63 ± 0.64 | N/A |
Group | Activity Offset (m/s2) | Instructed Neutral Standing Offset (m/s2) |
---|---|---|
athletes | 1.63 ± 1.08 | 0.29 ± 0.090 |
controls | 1.56 ± 1.32 | 0.15 ± 0.041 |
Group | Level (m/s2) | Variability (m/s2) | Time Above Dynamic Threshold (min) |
---|---|---|---|
athletes | 7.57 ± 1.65 | 12.32 ± 2.08 | 69.76 ± 7.69 |
controls | 3.62 ± 0.95 | 4.51 ± 2.26 | 16.85 ± 9.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horenstein, R.E.; Goudeau, Y.R.; Lewis, C.L.; Shefelbine, S.J. Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports. Sensors 2020, 20, 4970. https://doi.org/10.3390/s20174970
Horenstein RE, Goudeau YR, Lewis CL, Shefelbine SJ. Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports. Sensors. 2020; 20(17):4970. https://doi.org/10.3390/s20174970
Chicago/Turabian StyleHorenstein, Rachel E., Yohann R. Goudeau, Cara L. Lewis, and Sandra J. Shefelbine. 2020. "Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports" Sensors 20, no. 17: 4970. https://doi.org/10.3390/s20174970
APA StyleHorenstein, R. E., Goudeau, Y. R., Lewis, C. L., & Shefelbine, S. J. (2020). Using Magneto-Inertial Measurement Units to Pervasively Measure Hip Joint Motion during Sports. Sensors, 20(17), 4970. https://doi.org/10.3390/s20174970