Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements
Abstract
:1. Introduction
2. Mobile Multi GNSS Measuring Platform
3. Results of Multi GNSS Measurements of Railway Track
3.1. Stationary Measurements
3.2. Mobile Measurements on Straight Track Section
3.3. Mobile Measurements on Railway Track Arc Section
4. Digital Filtering of Railway Track Coordinates
- correct operation even when relatively large parts of values are missing, by introducing the weight coefficient 0 or 1,
- single–parameter control of exit signal smoothness,
- possibility of cross–validation.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elberink, S.; Khoshelham, K. Automatic Extraction of Railroad Centerlines from Mobile Laser Scanning Data. Remote Sens. 2015, 7, 5565–5583. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization (CEN). Railway Applications-Track-Track Geometry Quality—Part 1: Characterization of Track Geometry; CEN: Brussels, Belgium, 2019. [Google Scholar]
- Chiou, S.B.; Yen, J.Y. Precise Railway Alignment Measurements of the Horizontal Circular Curves and the Vertical Parabolic Curves Using the Chord Method. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2019, 233, 537–549. [Google Scholar] [CrossRef]
- Weston, P.; Roberts, C.; Yeo, G.; Stewart, E. Perspectives on Railway Track Geometry Condition Monitoring from In-Service Railway Vehicles. Veh. Syst. Dyn. 2015, 53, 1063–1091. [Google Scholar] [CrossRef]
- Taheri Andani, M.; Peterson, A.; Munoz, J.; Ahmadian, M. Railway Track Irregularity and Curvature Estimation Using Doppler LIDAR Fiber Optics. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2018, 232, 63–72. [Google Scholar] [CrossRef]
- Aceituno, J.F.; Chamorro, R.; Muñoz, S.; Escalona, J.L. An Alternative Procedure to Measure Railroad Track Irregularities. Application to a Scaled Track. Measurement 2019, 137, 417–427. [Google Scholar] [CrossRef]
- Barbosa, R.S. New Method for Railway Track Quality Identification through the Safety Dynamic Performance of Instrumented Railway Vehicle. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2265–2275. [Google Scholar] [CrossRef]
- Bokhman, E.D.; Boronachin, A.M.; Filatov, Y.V.; Larionov, D.Y.; Podgornaya, L.N.; Shalymov, R.V.; Zuzev, G.N. Optical-Inertial System for Railway Track Diagnostics. In Proceedings of the 2014 DGON Inertial Sensors and Systems, Karlsruhe, Germany, 16–17 September 2014; pp. 1–17. [Google Scholar] [CrossRef]
- Chen, Q.; Niu, X.; Zhang, Q.; Cheng, Y. Railway Track Irregularity Measuring by GNSS/INS Integration: Chen et al.: Railway Track Irregularity by GNSS/INS. J. Inst. Navig. 2015, 62, 83–93. [Google Scholar] [CrossRef]
- Chellaswamy, C.; Muthammal, R.; Geetha, T.S. A New Methodology for Optimal Rail Track Condition Measurement Using Acceleration Signals. Meas. Sci. Technol. 2018, 29, 075901. [Google Scholar] [CrossRef]
- Chen, Q.; Niu, X.; Zuo, L.; Zhang, T.; Xiao, F.; Liu, Y.; Liu, J. A Railway Track Geometry Measuring Trolley System Based on Aided INS. Sensors 2018, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Kampczyk, A. Magnetic-Measuring Square in the Measurement of the Circular Curve of Rail Transport Tracks. Sensors 2020, 20, 560. [Google Scholar] [CrossRef] [Green Version]
- Czaplewski, K.; Specht, C.; Dabrowski, P.; Specht, M.; Wisniewski, Z.; Koc, W.; Wilk, A.; Karwowski, K.; Chrostowski, P.; Szmaglinski, J. Use of a Least Squares with Conditional Equations Method in Positioning a Tramway Track in the Gdansk Agglomeration. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 895–900. [Google Scholar] [CrossRef]
- Gabara, G.; Sawicki, P. A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds. Sensors 2018, 18, 791. [Google Scholar] [CrossRef] [Green Version]
- Ciećko, A.; Bakuła, M.; Grunwald, G.; Ćwiklak, J. Examination of Multi-Receiver GPS/EGNOS Positioning with Kalman Filtering and Validation Based on CORS Stations. Sensors 2020, 20, 2732. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Lau, L. Development of a Trajectory Constrained Rotating Arm Rig for Testing GNSS Kinematic Positioning. Measurement 2019, 140, 479–485. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. A-PPP: Array-Aided Precise Point Positioning with Global Navigation Satellite Systems. IEEE Trans. Signal Process. 2012, 60, 2870–2881. [Google Scholar] [CrossRef]
- Xu, P.; Shu, Y.; Niu, X.; Liu, J.; Yao, W.; Chen, Q. High-Rate Multi-GNSS Attitude Determination: Experiments, Comparisons with Inertial Measurement Units and Applications of GNSS Rotational Seismology to the 2011 Tohoku Mw9.0 Earthquake. Meas. Sci. Technol. 2019, 30, 024003. [Google Scholar] [CrossRef]
- Naganuma, Y.; Yada, T.; Uematsu, T. Development of an Inertial Track Geometry Measuring Trolley and Utilization of Its Highprecision Data. Int. J. Transp. Dev. Integr. 2019, 3, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, Q.; Niu, X.; Shi, C. Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement. Sensors 2019, 19, 5296. [Google Scholar] [CrossRef] [Green Version]
- González, E.; Prados, C.; Antón, V.; Kennes, B. GRAIL-2: Enhanced Odometry Based on GNSS. Procedia-Soc. Behav. Sci. 2012, 48, 880–887. [Google Scholar] [CrossRef]
- Goya, J.; De Miguel, G.; Arrizabalaga, S.; Zamora-Cadenas, L.; Adin, I.; Mendizabal, J. Methodology and Key Performance Indicators (KPIs) for Railway On-Board Positioning Systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 4035–4042. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, S.; Cai, B.; Wang, J.; ShangGuan, W.; Rizos, C. A Multi-Sensor Positioning Method-Based Train Localization System for Low Density Line. IEEE Trans. Veh. Technol. 2018, 67, 10425–10437. [Google Scholar] [CrossRef]
- Koc, W.; Specht, C.; Chrostowski, P.; Szmagliński, J. Analysis of the Possibilities in Railways Shape Assessing Using GNSS Mobile Measurements. MATEC Web Conf. 2019, 262, 11004. [Google Scholar] [CrossRef]
- Liu, J.; Cai, B.; Lu, D.; Wang, J. An Enhanced RAIM Method for Satellite-Based Positioning Using Track Constraint. IEEE Access 2019, 7, 54390–54409. [Google Scholar] [CrossRef]
- Marais, J.; Beugin, J.; Berbineau, M. A Survey of GNSS-Based Research and Developments for the European Railway Signaling. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2602–2618. [Google Scholar] [CrossRef] [Green Version]
- de Miguel, G.; Goya, J.; Fernandez, N.; Arrizabalaga, S.; Mendizabal, J.; Adin, I. Map-Aided Software Enhancement for Autonomous GNSS Complementary Positioning System for Railway. IEEE Trans. Veh. Technol. 2019, 68, 11611–11620. [Google Scholar] [CrossRef]
- Otegui, J.; Bahillo, A.; Lopetegi, I.; Diez, L.E. Evaluation of Experimental GNSS and 10-DOF MEMS IMU Measurements for Train Positioning. IEEE Trans. Instrum. Meas. 2019, 68, 269–279. [Google Scholar] [CrossRef]
- Reimer, C.; Muller, F.J.; Hinuber, E.L.V. INS/GNSS/Odometer Data Fusion in Railway Applications. In Proceedings of the 2016 DGON Intertial Sensors and Systems (ISS), Karlsruhe, Germany, 20–21 September 2016; pp. 1–14. [Google Scholar] [CrossRef]
- Stallo, C.; Neri, A.; Salvatori, P.; Capua, R.; Rispoli, F. GNSS Integrity Monitoring for Rail Applications: Two-Tiers Method. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1850–1863. [Google Scholar] [CrossRef]
- Spinsante, S.; Stallo, C. Hybridized-GNSS Approaches to Train Positioning: Challenges and Open Issues on Uncertainty. Sensors 2020, 20, 1885. [Google Scholar] [CrossRef] [Green Version]
- Strach, M.; Dronszczyk, P. Comprehensive 3D Measurements of Tram Tracks in the Tunnel Using the Combination of Laser Scanning Technology and Traditional TPS/GPS Surveying. Transp. Res. Procedia 2016, 14, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Niu, X.; Shi, C. Impact Assessment of Various IMU Error Sources on the Relative Accuracy of the GNSS/INS Systems. IEEE Sens. J. 2020, 20, 5026–5038. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Q.; Niu, X. Kinematic Measurement of the Railway Track Centerline Position by GNSS/INS/Odometer Integration. IEEE Access 2019, 7, 157241–157253. [Google Scholar] [CrossRef]
- Wilk, A.; Specht, C.; Koc, W.; Karwowski, K.; Chrostowski, P.; Szmagliński, J.; Dąbrowski, P.; Specht, M.; Judek, S.; Skibicki, J.; et al. Research Project BRIK: Development of an Innovative Method for Determiningthe Precise Trajectory of a Railway Vehicle. Transp. Overv.-Przeglad Komun. 2019, 7, 32–47. [Google Scholar] [CrossRef]
- Schafer, R. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A Perfect Smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.G. An Optimal Savitzky–Golay Derivative Filter with Geophysical Applications: An Example of Self-potential Data. Geophys. Prospect. 2020, 68, 1041–1056. [Google Scholar] [CrossRef]
- Koc, W.; Specht, C.; Szmaglinski, J.; Chrostowski, P. A Method for Determination and Compensation of a Cant Influence in a Track Centerline Identification Using GNSS Methods and Inertial Measurement. Appl. Sci. 2019, 9, 4347. [Google Scholar] [CrossRef] [Green Version]
- Lau, L.; Cross, P.; Steen, M. Flight Tests of Error-Bounded Heading and Pitch Determination with Two GPS Receivers. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 388–404. [Google Scholar] [CrossRef]
- Specht, C.; Koc, W.; Chrostowski, P.; Szmagliński, J. Accuracy Assessment of Mobile Satellite Measurements in Relation to the Geometrical Layout of Rail Tracks. Metrol. Meas. Syst. 2019, 26, 309–321. [Google Scholar] [CrossRef]
- Specht, M.; Specht, C.; Wilk, A.; Koc, W.; Smolarek, L.; Czaplewski, K.; Karwowski, K.; Dąbrowski, P.S.; Skibicki, J.; Chrostowski, P.; et al. Testing the Positioning Accuracy of GNSS Solutions during the Tramway Track Mobile Satellite Measurements in Diverse Urban Signal Reception Conditions. Energies 2020, 13, 3646. [Google Scholar] [CrossRef]
- Ansari, K. Real-Time Positioning Based on Kalman Filter and Implication of Singular Spectrum Analysis. IEEE Geosci. Remote Sens. Lett. 2020, 1–4. [Google Scholar] [CrossRef]
- Shuai, Z.; Gao, F.; Fu, R.; Qi, W. Real-Time Electrical Simulation Inertia Detection Based on Savitzky-Golay Filtering Algorithm. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 2232–2237. [Google Scholar] [CrossRef]
- Karaim, M.; Noureldin, A.; Karamat, T.B. Low-Cost IMU Data Denoising Using Savitzky-Golay Filters. In Proceedings of the 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, UAE, 19–21 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
Receiver | Coordinates Y, X | Standard Deviation | ||
---|---|---|---|---|
Y [m] | X [m] | σY [mm] | σX [mm] | |
A | 6,473,870.062 | 5,961,286.486 | 6.70 | 6.80 |
B | 6,473,873.743 | 5,961,292.432 | 12.82 | 10.20 |
C | 6,473,870.691 | 5,961,286.092 | 5.88 | 6.79 |
D | 6,473,869.418 | 5,961,286.889 | 7.34 | 5.27 |
E | 6,473,874.379 | 5,961,292.044 | 8.52 | 10.77 |
F | 6,473,873.109 | 5,961,292.835 | 5.43 | 4.88 |
Section | Distance [mm] | GNNS Distance [mm] | Absolute Error Δ [mm] | Relative Error δ [%] |
---|---|---|---|---|
AC | 750 | 742.2 | 7.8 | 1.04 |
AD | 759.7 | 9.7 | 1.29 | |
BE | 745.0 | 5.0 | 0.67 | |
BF | 751.2 | 1.2 | 0.16 | |
CD | 1500 | 1501.9 | 1.9 | 0.03 |
EF | 1496.2 | 3.8 | 0.25 | |
CE | 7000 | 7001.9 | 1.9 | 0.03 |
AB | 6993.2 | 6.8 | 0.10 | |
DF | 6998.5 | 1.5 | 0.02 | |
BC | 7040 | 7036.4 | 3.6 | 0.05 |
AE | 7048.7 | 8.7 | 0.12 | |
AF | 7042.3 | 2.3 | 0.03 | |
BD | 7030.7 | 9.3 | 0.13 | |
CF | 7159 | 7163.4 | 4.4 | 0.06 |
DE | 7154.4 | 4.5 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, A.; Koc, W.; Specht, C.; Judek, S.; Karwowski, K.; Chrostowski, P.; Czaplewski, K.; Dabrowski, P.S.; Grulkowski, S.; Licow, R.; et al. Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors 2020, 20, 5018. https://doi.org/10.3390/s20185018
Wilk A, Koc W, Specht C, Judek S, Karwowski K, Chrostowski P, Czaplewski K, Dabrowski PS, Grulkowski S, Licow R, et al. Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors. 2020; 20(18):5018. https://doi.org/10.3390/s20185018
Chicago/Turabian StyleWilk, Andrzej, Wladyslaw Koc, Cezary Specht, Slawomir Judek, Krzysztof Karwowski, Piotr Chrostowski, Krzysztof Czaplewski, Pawel S. Dabrowski, Sławomir Grulkowski, Roksana Licow, and et al. 2020. "Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements" Sensors 20, no. 18: 5018. https://doi.org/10.3390/s20185018
APA StyleWilk, A., Koc, W., Specht, C., Judek, S., Karwowski, K., Chrostowski, P., Czaplewski, K., Dabrowski, P. S., Grulkowski, S., Licow, R., Skibicki, J., Specht, M., & Szmaglinski, J. (2020). Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors, 20(18), 5018. https://doi.org/10.3390/s20185018