Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Apparatus
2.2. Preparation of Methylcellulose/Polyacrylate Optical Sensor Membrane
2.3. Optimization of the Carrageenan Fluorescence Sensor Response
3. Results and Discussion
3.1. Morphology of the Methylcellulose/Poly(n-butyl acrylate) Composite Membrane
3.2. FTIR Analysis of Mc/PnBA Composite Membrane
3.3. Optimization of Immobilized MB Concentration
3.4. Effect of Buffer pH on the Carrageenan Optosensor Response
3.5. Effect of Buffer Concentration
3.6. Optical Sensor toward Carrageenan Detection
3.7 Recovery Studies of the Fluorescence Carrageenan Optical Sensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.K. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; John Wiley & Sons, Chichester, West Sussex: Chichester, UK; Wiley-Blackwel: Hoboken, NJ, USA, 2011. [Google Scholar]
- Schmidt, A.G.; Wartewig, S.; Picker, K.M. 2003. Potential of carrageenans to protect drugs from polymorphic transformation. Eur. J. Pharm. Biopharm. 2003, 56, 101–110. [Google Scholar] [CrossRef]
- Keppeler, S.; Ellis, A.; Jacquier, J.C. Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 2009, 78, 973–977. [Google Scholar] [CrossRef]
- Thommes, M.; Kleinebudde, P. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type. Eur. J. Pharm. Biopharm. 2006, 63, 68–75. [Google Scholar] [CrossRef] [PubMed]
- James, N.B. Gums and Hydrocolloids, Carbohydrates in Food, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 209–231. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; Silva, D.B., Jr.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Venugopal, V. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Williams, D.W.; Patel, P.O.; Shepherd, R.; Vreeland, V. Detection of Carrageenan (and Alginate) in Baby Foods by Dot-Blot and Enzyme-Labelled Immunoassays. Leatherhead Food Research, Ed.; British Food Manufacturing Industries Research Association: Leatherhead, UK, 1994; p. 717. [Google Scholar]
- Arakawa, S.; Ishihara, H.; Nishio, O.; IsomuraJ, S. A sandwich enzyme-linked immunosorbent assay for kappa-carrageenan determination. Sci. Food. Agric. 1991, 57, 135–140. [Google Scholar] [CrossRef]
- Richmond, M.D.; Yeung, E.S. Development of laser-excited indirect fluorescence detection for high-molecular-weight polysaccharides in capillary electrophoresis. Anal. Biochem. 1993, 210, 245. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.; Roy, D.; Saha, P.; Gopakumar, D.; Thomas, S. Rapid methylene blue adsoprtion using modified lignocellulosic materials. Process Safety Environ. 2017, 107, 346–356. [Google Scholar] [CrossRef]
- Ulianas, A.; Lee, Y.H.; Musa, A. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction. Sensors 2011, 11, 8323–8338. [Google Scholar] [CrossRef] [Green Version]
- Ulianas, A.; Lee, Y.H.; Musa, A.; Lau, H.; Zamri, I.; Tan, L.L. A Regenerable Screen-printed DNA Biosensor Based on Acrylic Microsphere-Gold Nanoparticle Composite for Genetically Modified Soybean Determination. Sens. Actuators B Chem. 2014, 190, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Lee, Y.H.; Futra, D.; Chew, P.C.; Zulkafli, A.R.; Tan, L.L. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-Composite for the Determination of Arowana Fish Gender. Nanoscale Res. Lett. 2017, 12, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Zhang, Y.; Lu, Q.; Cheng, X. Biosorption of methylene blue by chemically modified cellulose waste. J. Wuhan Univ. Technol. 2014, 29, 817–823. [Google Scholar] [CrossRef]
- Dias, S.L.L.P.; Fujiwara, S.T.; Gushikem, Y.; Bruns, R.E. Methylene blue immobilised on cellulose surfaces modified with titanium dioxide and titanium phosphate: Factorial design optimisation of redox properties. J. Electroanal. Chem. 2002, 531, 141–146. [Google Scholar] [CrossRef]
- Nur Syarmim, M.N.; Tan, L.L.; Lee, Y.H.; Chong, K.F.; Saiful Nizam, T. Acrylic microspheres-based optosensor for visual detection of nitrite. Food Chem. 2016, 207, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.A.; Quemener, B. Measurement of carrageenans in food: Challenges, progress, and trends in analysis. Trends Food Sci. Technol. 1999, 10, 169–181. [Google Scholar] [CrossRef]
- Ukhanov, K.Y.; Flores, T.M.; Hsiao, H.S.; Mohapatra, P.; Pitts, C.H.; Payne, R. Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes. J. Gen. Physiol. 1995, 105, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Dell’antone, P.; Colonna, R.; Azzone, G.F. The Membrane Structure Studied with Cationic Dyes. Eur. J. Biochem. 1972, 24, 553–565. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm. 2008, 77, 16–23. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z. Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. 2013, 228, 392–397. [Google Scholar] [CrossRef]
- Davidson, G.F. The acidic properties of cotton cellulose and derived oxycelluloses. Part II. the absorption of methylene blue. J. Tex. Inst. 1948, 39, 65–86. [Google Scholar] [CrossRef]
- Soedjak, H.S. Colorimetric Determination of Carrageenans and Other Anionic Hydrocolloids with Methylene Blue. Anal. Chem. 1994, 66, 4514–4518. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Bourbon, A.I.; Quintas, M.A.C.; Coimbra, M.A.; Vicente, A.A. Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov. Food Sci. Emerg. Technol. 2012, 16, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, S.; Ura, F.; Ochi, T.; Iida, H.; Ukai, S. Interaction of thaumatin with carrageenans. I. Effects of pH, temperature and competing cations. Food Hydrocoll. 1990, 4, 105–119. [Google Scholar] [CrossRef]
- Graham, H.D. Quantitative aspects of the interaction of carrageenan with cationic substances. I. interaction with methylene blue. J. Food Sci. 1960, 25, 720–730. [Google Scholar] [CrossRef]
- Eliasson, A.C. Hydrocolloids/Food Gums: Analytical Aspects, Carbohydrates in Food; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tan, J.S.; Schneider, R.L. Dye binding and its relation to polyelectrolyte conformation. J. Phys. Chem. 1975, 79, 1380–1386. [Google Scholar] [CrossRef]
- Nandini, R.; Vishalakshi, B. A Study of Interaction of Methyl Orange with Some Polycations. J. Chem. 2012, 9, 1–14. [Google Scholar] [CrossRef]
- Ling, Y.P.; Lee, Y.H. Reflectance based sensor for carrageenan utilising methylene blue embedded acrylic microspheres. Sens. Actuators B Chem. 2014, 192, 247–252. [Google Scholar] [CrossRef]
- Ziolkowska, D.; Kaniewska, A.; Lmkiewicz, J.; Shyichuk, A. Determination of carrageenan by means of photometric titration with methylene blue and toluidine blue dyes. Carbohydr. Polym. 2017, 165, 1–6. [Google Scholar] [CrossRef]
pH Value | R2 | Sensitivity | λ-Carrageenan Linear Concentration Range (mg L−1) |
---|---|---|---|
4 | 0.9815 | −407 | 5.0–20.0 |
7 | 0.9923 | −564 | 5.0–20.0 |
9 | 0.9419 | −434 | 5.0–20.0 |
Types of Carrageenan | R2 | Sensitivity | Linear Range (mg L−1) |
---|---|---|---|
κ | 0.98 | −312 | 1.0–20.0 |
ι | 0.99 | −304 | 1.0–20.0 |
λ | 0.99 | −300 | 1.0–20.0 |
Spiked ɩ-Carrageenan Concentration(mg L−1) | Found(mg L−1) Pineapple Juice | *R (%) | Found (mg L−1) Apple Juice | *R (%) | Found (mg L−1) Orange Juice | *R (%) |
---|---|---|---|---|---|---|
5 | 4.7 | 94 | 4.5 | 90 | 4.9 | 98 |
10 | 10.2 | 102 | 9.4 | 94 | 10 | 100 |
15 | 14.9 | 99 | 14.6 | 97 | 14.8 | 99 |
Sensing Element | Transducer | Sensitivity (Δunits/decade) | R2 | Dynamic Linear Range | Detection Limit (mg L−1) | Cost | Reference |
---|---|---|---|---|---|---|---|
MB | Reflectometry | 377.5 | 0.980 | 80.0–5000.0 mg L−1 | 80.00 | Low | Ling and Lee [31] |
MB | Reflectometry | 279.9 | 0.983 | 100.0–5000.0 mg L−1 | 100.00 | Low | Ling and Lee [31] |
MB | UV-Vis spectrophotometry | (0.2–2.0)×10−3% | High | Soedjak [24] | |||
MB and Toluidine Blue | UV-Vis spectrophotometry | >0.996 | 2.0–60.0 mg L−1 | High | Ziolkowska et al. [32] | ||
MB | Fluorometry | −312.0 | 0.992 | 1.0–20.0 mg L−1 | 0.04 | Low | Present study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, R.A.; Heng, L.Y.; Tan, L.L. Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane. Sensors 2020, 20, 5043. https://doi.org/10.3390/s20185043
Hassan RA, Heng LY, Tan LL. Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane. Sensors. 2020; 20(18):5043. https://doi.org/10.3390/s20185043
Chicago/Turabian StyleHassan, Riyadh Abdulmalek, Lee Yook Heng, and Ling Ling Tan. 2020. "Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane" Sensors 20, no. 18: 5043. https://doi.org/10.3390/s20185043
APA StyleHassan, R. A., Heng, L. Y., & Tan, L. L. (2020). Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane. Sensors, 20(18), 5043. https://doi.org/10.3390/s20185043