GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism
Abstract
:1. Introduction
- To solve the trajectory completion problem, we for the first time propose deep learning based convolution recurrent encoder decoder architecture, to predict the complete sequence of GPS points from partial input of GPS trajectory points on occupancy grid map.
- Due to the spatiotemporal nature of GPS data, we used Convolutional Long Short Term Memory (ConvLSTM) based encoder decoder architecture using attention mechanism.
- To interpret the missing points in a sequence, it is important to know the information from both past and future timesteps. For this purpose, we make use of bidirectional encoder to encode the missing trajectory.
- Our model can effectively integrate global features and auxiliary information that support the encoder-decoder model for trajectory completion task with high accuracy.
2. Related Work
3. Approach
3.1. Data Description
3.2. Data Preprocessing
3.3. Problem Definition
3.4. Convolutional Long Short Term Memory (ConvLSTM)
3.5. Model Description
3.6. Encoder Decoder Architecture Using Attention Mechanism
3.7. Input Features
3.7.1. Auxiliary Features
3.7.2. Local Features
3.7.3. Global Features
4. Experiments
4.1. Evaluation Metric
4.2. Training Setup
4.3. Results and Discussion
4.3.1. Comparison with State of the Art Methods
4.3.2. Evaluation of Proposed Method
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanoli, S.A.; Shah, S.A.; Khan, M.B.; Nawaz, F.; Hussain, A.; Al-Dubai, A.Y.; Khan, I.; Shah, S.Y.; Alsarhan, A. Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications. IEEE Access 2020, 8, 29395–29406. [Google Scholar] [CrossRef]
- Shah, S.A.; Fan, D.; Ren, A.; Zhao, N.; Yang, X.; Tanoli, S.A. Seizure episodes detection via smart medical sensing system. J. Ambient. Intell. Humaniz. Comput. 2018, 23, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Li, J.; Wang, S.; Wang, L.; Gong, Q.; Yang, R.; Li, B.; Yu, P.; He, L. Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification. IEEE Trans. Knowl. Data Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.; Yang, X.; Abbasi, Q.H. Cognitive health care system and its application in pill-rolling assessment. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2632. [Google Scholar] [CrossRef]
- Haider, D.; Ren, A.; Fan, D.; Zhao, N.; Yang, X.; Tanoli, S.A.K.; Zhang, Z.; Hu, F.; Shah, S.A.; Abbasi, Q.H. Utilizing a 5G spectrum for health care to detect the tremors and breathing activity for multiple sclerosis. Trans. Emerg. Telecommun. Technol. 2018, 29, e3454. [Google Scholar] [CrossRef]
- Fioranelli, F.; Kernec, J.L.; Shah, S.A. Radar for health care: Recognizing human activities and monitoring vital signs. IEEE Potentials 2019, 38, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, X.; Cao, J.; He, L.; Stenneth, L.; Yu, P.S.; Li, Z.; Huang, Z. Computing urban traffic congestions by incorporating sparse GPS probe data and social media data. Acm Trans. Inf. Syst. (TOIS) 2017, 35, 1–30. [Google Scholar] [CrossRef]
- Wang, S.; Li, F.; Stenneth, L.; Philip, S.Y. Enhancing traffic congestion estimation with social media by coupled hidden Markov model. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Germany, 2016; pp. 247–264. [Google Scholar]
- Wang, S.; Zhang, X.; Li, F.; Philip, S.Y.; Huang, Z. Efficient traffic estimation with multi-sourced data by parallel coupled hidden markov model. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3010–3023. [Google Scholar] [CrossRef]
- Alkan, R.M.; Karaman, H.; Sahin, M. GPS, GALILEO and GLONASS satellite navigation systems & GPS modernization. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, RAST, Istanbul, Turkey, 9–11 June 2005; pp. 390–394. [Google Scholar]
- Wang, S.; Cao, J.; Yu, P.S. Deep learning for spatio-temporal data mining: A survey. arXiv 2019, arXiv:1906.04928. [Google Scholar]
- Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.Y. Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20 April 2009; pp. 791–800. [Google Scholar]
- Zhang, Y.; Wang, S.; Chen, B.; Cao, J.; Huang, Z. Trafficgan: Network-scale deep traffic prediction with generative adversarial nets. IEEE Trans. Intell. Transp. Syst. 2019. [Google Scholar] [CrossRef]
- Su, X.; Tong, H.; Ji, P. Activity recognition with smartphone sensors. Tsinghua Sci. Technol. 2014, 19, 235–249. [Google Scholar]
- Wang, S.; He, L.; Stenneth, L.; Yu, P.S.; Li, Z. Citywide traffic congestion estimation with social media. In Proceedings of the 23rd Sigspatial International Conference on Advances in Geographic Information Systems, Washington, DC, USA, 3–6 November 2015; pp. 1–10. [Google Scholar]
- Zhang, W.; Wang, X.; Huang, Z. A System of Mining Semantic Trajectory Patterns from GPS Data of Real Users. Symmetry 2019, 11, 889. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pham, T.A.; Cong, G.; Yuan, Q. An experimental evaluation of point-of-interest recommendation in location-based social networks. Proc. VLDB Endow. 2017, 10, 1010–1021. [Google Scholar] [CrossRef]
- Yang, X.; Stewart, K.; Tang, L.; Xie, Z.; Li, Q. A review of GPS trajectories classification based on transportation mode. Sensors 2018, 18, 3741. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y. Urban computing: Enabling urban intelligence with big data. Front. Comput. Sci. 2017, 11, 1–3. [Google Scholar] [CrossRef]
- Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. (TIST) 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Chen, B.; Cao, J. GCGAN: Generative adversarial nets with graph CNN for network-scale traffic prediction. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Wang, S.; He, L.; Stenneth, L.; Philip, S.Y.; Li, Z.; Huang, Z. Estimating urban traffic congestions with multi-sourced data. In Proceedings of the 2016 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; Volume 1, pp. 82–91. [Google Scholar]
- Zheng, K.; Zheng, Y.; Xie, X.; Zhou, X. Reducing uncertainty of low-sampling-rate trajectories. In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 1144–1155. [Google Scholar]
- Wei, L.Y.; Zheng, Y.; Peng, W.C. Constructing popular routes from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12 August 2012; pp. 195–203. [Google Scholar]
- Li, Y.; Li, Y.; Gunopulos, D.; Guibas, L. Knowledge-based trajectory completion from sparse GPS samples. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems; ACM: New York, NY, USA, 2016; pp. 1–10. [Google Scholar]
- Asadi, A.; Safabakhsh, R. The Encoder-Decoder Framework and Its Applications. In Deep Learning: Concepts and Architectures; Springer: Cham, Germany, 2020; pp. 133–167. [Google Scholar]
- Femminella, M.; Reali, G. A zero-configuration tracking system for first responders networks. IEEE Syst. J. 2015, 11, 2917–2928. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, Q.; Zhu, M.; Li, M.; Li, X.; Wang, J.; You, S.; Zhang, Y. An enhanced transportation mode detection method based on GPS data. In International Conference of Pioneering Computer Scientists, Engineers and Educators; Springer: Singapore, 2017; pp. 605–620. [Google Scholar]
- Shen, G.; Zhang, C.; Tang, B.; Yuan, R. An Area-Based Method for Missing Trajectory Completion: A STZ Algorithm. In Proceedings of the 2015 8th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2015; Volume 2, pp. 184–188. [Google Scholar]
- Goren-Bar, T.; Greenfeld, J. A method for constructing 3D traveling routes from gps navigation data. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on GeoStreaming; ACM: New York, NY, USA, 2012; pp. 91–100. [Google Scholar]
- Hunter, T.; Abbeel, P.; Bayen, A. The path inference filter: Model-based low-latency map matching of probe vehicle data. IEEE Trans. Intell. Transp. Syst. 2013, 15, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, Q.; Kerber, M.; Zhang, L.; Guibas, L. Large-scale joint map matching of GPS traces. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems; ACM: New York, NY, USA, 2013; pp. 214–223. [Google Scholar]
- Han, X.; Li, Z.; Huang, H.; Kalogerakis, E.; Yu, Y. High-resolution shape completion using deep neural networks for global structure and local geometry inference. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22 October 2017; pp. 85–93. [Google Scholar]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144. Available online: https://arxiv.org/abs/1609.08144 (accessed on 30 August 2020).
- Xu, J.; Li, C.; Wang, S.; Huang, F.; Li, Z.; He, Y.; Zhao, Z. DTRP: A Flexible Deep Framework for Travel Route Planning. In International Conference on Web Information Systems Engineering; Springer: Cham, Germany, 2017; pp. 359–375. [Google Scholar]
- Kim, B.; Kang, C.M.; Kim, J.; Lee, S.H.; Chung, C.C.; Choi, J.W. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 399–404. [Google Scholar]
- Wang, H.; Liu, G.; Duan, J.; Zhang, L. Detecting transportation modes using deep neural network. IEICE Trans. Inf. Syst. 2017, 100, 1132–1135. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.; Ahmad, J.; Shah, S.A.; Morison, G.; Skelton, D.A.; Larijani, H.; Abbasi, Q.H.; Imran, M.A.; Gibson, R.M. WiFreeze: Multiresolution scalograms for freezing of gait detection in Parkinson’s leveraging 5G spectrum with deep learning. Electronics 2019, 8, 1433. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, S.; Heaslip, K. Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part Emerg. Technol. 2018, 86, 360–371. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Peng, H.; Wang, S.; Bhuiyan, M.Z.A.; Wang, L.; Gong, Q.; Liu, L.; Li, J. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 972–985. [Google Scholar] [CrossRef]
- Asif, N.; Huang, Z.; Wang, S.; Yasir, H.; Izhar, A.K.; Ullah, K.Z. Convolutional LSTM based transportation mode learning from raw GPS trajectories. IET Intell. Transp. Syst. 2020, 14, 570–577. [Google Scholar]
- Xingjian, S.H.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems. 2015, pp. 802–810. Available online: http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf (accessed on 30 August 2020).
- Zheng, Y.; Li, Q.; Chen, Y.; Xie, X.; Ma, W.Y. Understanding mobility based on GPS data. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Korea, 21 September 2008; pp. 312–321. [Google Scholar]
- Zheng, Y.; Xie, X.; Ma, W.Y. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 2010, 33, 32–39. [Google Scholar]
- Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634. [Google Scholar]
- Wang, D.; Wang, X.; Lv, S. End-to-End Mandarin Speech Recognition Combining CNN and BLSTM. Symmetry 2019, 11, 644. [Google Scholar] [CrossRef] [Green Version]
- Sadeghian, A.; Kosaraju, V.; Gupta, A.; Savarese, S.; Alahi, A. Trajnet: Towards a benchmark for human trajectory prediction. arXiv 2018. Available online: http://trajnet.stanford.edu/ (accessed on 30 August 2020).
- Zheng, Y.; Liu, L.; Wang, L.; Xie, X. Learning transportation mode from raw gps data for geographic applications on the web. In Proceedings of the 17th international conference on World Wide Web, Beijing, China, 21 April 2008; pp. 247–256. [Google Scholar]
- Nawaz, A.; Zhiqiu, H.; Senzhang, W.; Hussain, Y.; Naseer, A.; Izhar, M.; Khan, Z. Mode Inference using enhanced Segmentation and Pre-processing on raw Global Positioning System data. Meas. Control 2020. [Google Scholar] [CrossRef]
Method/ADE | Grid Resolution | |||
---|---|---|---|---|
10 m | 5 m | 3 m | 2 m | |
Linear Regression | 9.37 | 13.07 | 21.22 | 27.03 |
Regression Tree | 8.92 | 11.16 | 20.11 | 24.63 |
MLP | 8.06 | 10.38 | 17.78 | 20.57 |
Simple RNN | 6.18 | 9.73 | 14.43 | 16.14 |
CNN | 4.72 | 7.05 | 9.24 | 10.71 |
GRU | 4.07 | 5.49 | 7.69 | 8.36 |
Vanilla LSTM | 4.18 | 5.61 | 7.46 | 8.17 |
LSTM (Enc/Dec) | 4.05 | 5.58 | 7.34 | 7.93 |
ConvLSTM (Enc/Dec) | 3.88 | 5.13 | 5.98 | 6.56 |
ConvLSTM (Enc/Dec) + Att | 2.83 | 4.15 | 4.84 | 5.28 |
U-ConvLSTM (Enc/Dec) + Att + AuxGlobal | 2.58 | 3.88 | 4.54 | 4.96 |
B-ConvLSTM (Enc/Dec) + Att + AuxGlobal | 2.53 | 3.76 | 4.38 | 4.79 |
Missing Length (No. of Points) | Grid Resolution | |||
---|---|---|---|---|
10 m | 5 m | 3 m | 2 m | |
10 Pts | 2.53 | 3.76 | 4.38 | 4.79 |
15 Pts | 3.02 | 4.09 | 4.92 | 5.04 |
20 Pts | 3.35 | 4.68 | 5.61 | 5.45 |
25 Pts | 4.01 | 5.59 | 6.41 | 6.39 |
30 Pts | 5.01 | 8.17 | 8.86 | 8.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.; Huang, Z.; Wang, S.; Akbar, A.; AlSalman, H.; Gumaei, A. GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism. Sensors 2020, 20, 5143. https://doi.org/10.3390/s20185143
Nawaz A, Huang Z, Wang S, Akbar A, AlSalman H, Gumaei A. GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism. Sensors. 2020; 20(18):5143. https://doi.org/10.3390/s20185143
Chicago/Turabian StyleNawaz, Asif, Zhiqiu Huang, Senzhang Wang, Azeem Akbar, Hussain AlSalman, and Abdu Gumaei. 2020. "GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism" Sensors 20, no. 18: 5143. https://doi.org/10.3390/s20185143
APA StyleNawaz, A., Huang, Z., Wang, S., Akbar, A., AlSalman, H., & Gumaei, A. (2020). GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism. Sensors, 20(18), 5143. https://doi.org/10.3390/s20185143