A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentations
2.2. Chemicals
2.3. Sample Preparation
2.4. SWV Analysis
2.5. UHPLC-ESI-MS/MS Analysis
3. Results and Discussion
3.1. Voltammetric Behaviour of EIMTC
3.2. Effect of pH
3.3. Effect of SWV Parameters
3.4. Interferences
3.5. Calibration Curve in Flow System, Precision and Reproducibility
3.6. Serum Samples Assay in Flow System
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sztanke, K.; Rzymowska, J.; Niemczyk, M.; Dybała, I.; Kozioł, A.E. Synthesis, Crystal structure and anticancer activity of novel derivatives of ethyl 1-(4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)formate. Eur. J. Med. Chem. 2006, 41, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, K. New Ethyl 7,8-Dihydro-6H-Imidazo[2,1-c][1,2,4]Triazine-4-oxo-3-Carboxylates and Method for Obtaining Them. Polish Patent 196751, 31 January 2008. [Google Scholar]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. In vitro effects of a new fused azaisocytosine-like congener on relative cell proliferation, necrosis and cell cycle in cancer and normal cell cultures. Mol. Cell. Biochem. 2016, 418, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Rosolina, S.M.; Chambers, J.Q.; Xue, Z.-L. Direct analysis of palladium in active pharmaceutical ingredients by anodic stripping voltammetry. Anal. Chim. Acta 2016, 914, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Y.-T.; Li, D.-W.; Long, Y.-T. Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Blasco, C.A.; Plana, N.S.; Cruz, J.M.; Cortada, M.E. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Carvalho, J.H.S.; Machado, S.A.S.; Oliveira, O.N., Jr.; Janegitz, B.C. Simultaneous detection of quercetin and carbendazim in wine samples using disposable electrochemical sensors. ChemElectroChem 2020, 7, 3074–3081. [Google Scholar] [CrossRef]
- Silva, R.R.; Raymundo-Pereira, P.A.; Campos, A.M.; Wilson, D.; Otoni, C.G.; Barud, H.S.; Costa, C.A.R.; Domeneguetti, R.R.; Balogh, D.T.; Ribeiro, S.J.L.; et al. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020, 218, 121153. [Google Scholar] [CrossRef] [PubMed]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Machado, S.A.S.; Oliveira, O.N., Jr. Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J. Electroanal. Chem. 2019, 848, 113319. [Google Scholar] [CrossRef]
- Trojanowicz, M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. TrAC-Trends Anal. Chem. 2016, 84, 22–47. [Google Scholar] [CrossRef]
- Marken, F.; Gerrard, M.L.; Mellor, I.M.; Mortimer, R.J.; Madden, C.E.; Fletcher, S.; Holt, K.; Foord, J.S.; Dahm, R.H.; Page, F. Voltammetry at carbon nanofiber electrodes. Electrochem. Commun. 2001, 3, 177–180. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; You, T. Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods 2010, 2, 202–211. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review—Recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 037555. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. First electrochemical sensor (screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes) for ultratrace determination of diclofenac. Materials 2020, 13, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Kuryło, M. Simultaneous analysis of paracetamol and diclofenac using MWCNTs-COOH modified screen-printed carbon electrode and pulsed potential accumulation. Materials 2020, 13, 3091. [Google Scholar] [CrossRef] [PubMed]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Sasal, A.; Tyszczuk-Rotko, K.; Chojecki, M.; Korona, T.; Rotko, M. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor—Experimental and theoretical studies. Electroanalysis 2020, 32, 1618–1628. [Google Scholar] [CrossRef]
- Ludvik, J.; Zuman, P. Electrochemical proof of the single bond character of the N–N bonds in some 1,2,4-triazines. Indian J. Chem. 2003, 42A, 847–848. [Google Scholar]
- Stępniowska, A.; Sztanke, M.; Tuzimski, T.; Korolczuk, M.; Sztanke, K. A simple stripping voltammetric method for the determination of a new anticancer prodrug in serum. Biosens. Bioelectron. 2017, 94, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Tóth, K.; Štulic, K.; Kutner, W.; Fehér, Z.; Lindner, E. Electrchemical detction in liquid flow analitical techniques: Characterization and classification (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 1119–1138. [Google Scholar]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Konieczki, P.; Namiesnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Species | Tolerance Limits |
---|---|
Ca2+ | 50 |
Mg2+, Cl−, uric acid, glucose, adenine, dopamine | 5 |
epinephrine | 2.5 |
Fe3+, estradiol, ascorbic acid | 0.5 |
EIMTC Concentration [mol L−1] ± SD (n = 3) | Recovery [%] | Relative Error [%] | texp. | |||
---|---|---|---|---|---|---|
Added | Found SWV | Found UHPLC-ESI-MS/MS | ||||
Human | 5.0 × 10−8 | 4.86 × 10−8 ± 0.17 × 10−8 | 5.21 × 10−8 ± 0.05 × 10−8 | 97.2 | 7.2 | 1.98 |
serum | 1.0 × 10−7 | 0.99 × 10−7 ± 0.03 × 10−7 | 0.96 × 10−7 ± 0.03 × 10−7 | 99.0 | 3.0 | 0.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyszczuk-Rotko, K.; Kozak, J.; Sztanke, M.; Sztanke, K.; Sadok, I. A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate. Sensors 2020, 20, 5217. https://doi.org/10.3390/s20185217
Tyszczuk-Rotko K, Kozak J, Sztanke M, Sztanke K, Sadok I. A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate. Sensors. 2020; 20(18):5217. https://doi.org/10.3390/s20185217
Chicago/Turabian StyleTyszczuk-Rotko, Katarzyna, Jędrzej Kozak, Małgorzata Sztanke, Krzysztof Sztanke, and Ilona Sadok. 2020. "A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate" Sensors 20, no. 18: 5217. https://doi.org/10.3390/s20185217
APA StyleTyszczuk-Rotko, K., Kozak, J., Sztanke, M., Sztanke, K., & Sadok, I. (2020). A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate. Sensors, 20(18), 5217. https://doi.org/10.3390/s20185217