Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. ERT Setup
3.2. Time-Lapse ERT Inversion
3.3. Soil Moisture Sampling and Analysis
3.4. Water Conductivity Analysis
4. Results
4.1. Moisture Profiles
4.2. Time-Lapse ERT
5. Discussion
5.1. Uncertainty in the Gravimetric Moisture Reference Data
5.2. Noise in the ERT Data
5.3. Effects of Objects along the Field Transect
5.4. Relations with Other Studies and Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bojinksi, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. Climate Variables in support of climate research, applications and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1441. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. (Ed.) Procedures for Soil Analysis; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1992; ISBN 90-6672-044-1. [Google Scholar]
- Evett, S.R. Soil Water Measurement by Time Domain Reflectometry. In Encyclopedia of Water Science; Marcel Dekker, Inc.: New York, NY, USA, 2003; ISBN 0-8247-4241-9. [Google Scholar]
- Lunt, I.A.; Hubbard, S.S.; Rubin, Y. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Andreasen, M.; Jensen, K.H.; Desilets, D.; Franz, T.E.; Zreda, M.; Bogena, H.R.; Looms, M.C. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 2017, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Léger, E.; Saintenoy, A.; Coquet, Y. Hydrodynamic parameters of a sandy soil determined by ground-penetrating radar inside a single ring infiltrometer. Water Resour. Res. 2014, 50, 5459–5474. [Google Scholar] [CrossRef] [Green Version]
- Brunet, P.; Clément, R.; Bouvier, C. Monitoring soil water content and deficit using Electric Resistivity Tomography (ERT), a case study in the Cevennes area, France. J. Hydrol. 2010, 380, 146–153. [Google Scholar] [CrossRef]
- Daily, W.; Ramirez, A.; Binley, A.; LaBrecque, D. Electrical Resistance Tomography, Theory and Practice. In Near Surface Geophysics; Investigations in Geophysics; Butler, D.K., Ed.; Society of Exploration Geophysics: Tulsa, OK, USA, 2005; Volume 13, ISBN 978-1560801306. [Google Scholar]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Werban, U.; Al Hagrey, S.A.; Rabbel, W. Monitoring of root-zone water content in the laboratory by 2D geoelectrical tomography. J. Plant Nutr. Soil Sci. 2008, 171, 927–935. [Google Scholar] [CrossRef]
- Garré, S.; Javaux, M.; Vanderborght, J.; Pagès, L.; Vereecken, H. Three-Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics. Vadose Zone J. 2011, 10, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Nijland, W.; van der Meijde, M.; Addink, E.A.; de Jong, S.M. Detection of soil moisture and vegetation water abstraction in a Mediterranean natural area using electrical resistivity tomography. Catena 2010, 81, 209–216. [Google Scholar] [CrossRef]
- Alamry, A.S.; van der Meijde, M.; Noomen, M.; Addink, E.A.; van Benthem, R.; de Jong, S.M. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soil. Catena 2017, 157, 388–396. [Google Scholar] [CrossRef]
- Ain-Lhout, F.; Boutaleb, S.; Diaz-Barradas, M.C.; Jauregui, J.; Zunzunegui, M. Monitoring the evolution of soil moisture in root zone system of Argania spinosa using electrical resistivity imaging. Agric. Water Manag. 2016, 164, 158–166. [Google Scholar] [CrossRef]
- Calamita, G.; Perrone, A.; Brocca, L.; Strafce, S. Soil electrical resistivity for spatial sampling design, prediction and uncertainty modeling of soil moisture. Vadose Zone J. 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Shimada, J.; Sato, A. Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resour. Res. 2001, 37, 273–285. [Google Scholar] [CrossRef]
- Schwartz, B.F.; Schreiber, M.E.; Yan, T. Quantifying field scale soil moisture using electrical resistivity imaging. J. Hydrol. 2008, 362, 234–246. [Google Scholar] [CrossRef]
- Rodríguez-Robles, U.; Arredondo, T.; Huber-Sannwald, E.; Ramos-Leal, J.A.; Yépez, E.A. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences 2017, 14, 5343–5357. [Google Scholar] [CrossRef] [Green Version]
- Garré, S.; Gunther, T.; Diels, J.; Vanderborght, J. Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems. Vadose Zone J. 2012, 11, 1–12. [Google Scholar] [CrossRef]
- Michot, D.; Benderitter, Y.; Doringy, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Mares, R.; Barnard, H.R.; Mao, D.; Revil, A.; Singha, K. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. J. Hydrol. 2016, 536, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. Soil 2015, 1, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Brillante, L.; Bois, B.; Mathieu, O.; Bichet, V.; Michot, D.; Lévêque, J. Monitoring soil volume wetness in heterogeneous soils by electrical resistivity. A field-based pedotransfer function. J. Hydrol. 2014, 56, 56–66. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Fanti, R. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. Int. J. Geophys. 2019, 2019, 2983087. [Google Scholar] [CrossRef] [Green Version]
- Dumont, G.; Pilawski, T.; Dzaomuho-Lenieregue, P.; Hiligsmann, S.; Delvigne, F.; Thonart, P.; Robert, T.; Nguyen, F.; Hermans, T. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Manag. 2016, 55, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Laloy, E.; Javaux, M.; Vanclooster, M.; Roisin, C.; Bielders, C.L. Electrical Resistivity in a loamy soil: Identification of the appropriate pedo-electrical model. Vadose Zone J. 2011, 10, 1023–1033. [Google Scholar] [CrossRef]
- Lowrie, W. Fundamentals of Geophysics; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-85902-8. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990; ISBN 9781139167932. [Google Scholar]
- AGI. 2017, User Manual Sting R1/IP-AGI EarthImager 2D. Available online: www.agiusa.com (accessed on 6 May 2020).
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Archie, G.E. The electrical resistivity log as an aid determining some characteristics. Transactions of American Institute of Mining. Metall. Pet. Eng. 1942, 145, 54–62. [Google Scholar]
- Glover, P.W.J. Archie’s law—A reappraisal. Solid Earth 2016, 7, 1157–1169. Available online: www.solid-earth.net/7/1157/2016/ (accessed on 16 September 2020). [CrossRef] [Green Version]
- Tso, C.M.; Kuras, O.; Wilkinson, P.B.; Uhlemann, S.; Chambers, J.E.; Meldrum, P.I.; Graham, J.; Sherlock, E.F.; Binley, A. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. J. Appl. Geophys. 2017, 146, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Rucker, D. Investigating motion blur and temporal aliasing from time-lapse electrical resistivity. J. Appl. Geophys. 2014, 111, 1–13. [Google Scholar] [CrossRef]
- Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M.T.; Consoli, S. Monitoring and modelling of soil–plant interactions: The joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 2015, 19, 2213–2225. [Google Scholar] [CrossRef] [Green Version]
- Mary, B.; Peruzzo, L.; Boaga, J.; Schmutz, M.; Wu, Y.; Hubbard, S.S.; Cassiani, G. Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method. Hydrol. Earth Syst. Sci. 2018, 22, 5427–5444. [Google Scholar] [CrossRef] [Green Version]
- Michot, D.; Zahra, T.; Issifou, A. Non-stationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: A case study. Soil 2016, 2, 241–255. [Google Scholar] [CrossRef] [Green Version]
Date | Boreholes | Samples | Maximum Depth (cm) | Distance from ERT Setup (m) |
---|---|---|---|---|
14 October | 8 | 28 | 120 | 4 |
10 November | 7 | 28 | 90 | 4 |
20 December | 7 | 28 | 90 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors 2020, 20, 5313. https://doi.org/10.3390/s20185313
de Jong SM, Heijenk RA, Nijland W, van der Meijde M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors. 2020; 20(18):5313. https://doi.org/10.3390/s20185313
Chicago/Turabian Stylede Jong, Steven M., Renée A. Heijenk, Wiebe Nijland, and Mark van der Meijde. 2020. "Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions" Sensors 20, no. 18: 5313. https://doi.org/10.3390/s20185313
APA Stylede Jong, S. M., Heijenk, R. A., Nijland, W., & van der Meijde, M. (2020). Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors, 20(18), 5313. https://doi.org/10.3390/s20185313