Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor
Abstract
:1. Introduction
2. Design and Implementation
2.1. Capacitive IDC Sensor
2.2. Capacitance Measurement Circuit
- peak AC voltage of the capacitor [V]
- peak AC voltage of the square signal applied to the capacitor [V]
- the half-period of the signal for the 50% duty cycle signal [ns]
- signal period [ns]
- time constant of the circuit, equal with the product of R and C [ns]
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog to Digital Convertor |
HTMWE | Humidity and Temperature Measurement Wireless Equipment |
IDC | Interdigitated |
LCR | (L) Inductance (C) Capacitance and (R) resistance |
LoRa | Long Range |
MIL | One Thousandth of an Inch |
MCU | microcontroller |
PCB | Printed Circuit Board |
UN | United Nations |
WQMCM | Water Quality Monitoring, Control and Management |
WSN | Wireless Sensors Network |
Appendix A. Peak Voltage at Capacitor under Square Signal with Half-Period Lower than the Time Constant of the Circuit
Appendix B. Characterization Model of LC Circuit Used in the Resonance Method at the Measurements Performed with the LCR Meter
References
- United Nations, Department of Economic and Social Affairs. 2020. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 30 May 2020).
- Zia, H.; Harris, N.; Merrett, G.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Zia, H.; Harris, N.; Merrett, G. Water quality monitoring, control and management (WQMCM) framework using collaborative wireless sensor networks. In Proceedings of the 11th International Conference on Hydroinformatics (HIC), New York, NY, USA, 16–20 August 2014. [Google Scholar]
- Zia, H.; Harris, N.; Merrett, G. Empirical modeling and simulation for discharge dynamics enabling catchment-scale water quality management. In Proceedings of the 26th European Modeling and Simulation Symposium, EMSS 2014, Bordeaux, France, 10–12 September 2014; pp. 175–183. [Google Scholar]
- Zia, H.; Harris, N.; Merrett, G.; Rivers, M. Data-driven Low-Complexity Nitrate Loss Model utilizing Sensor Information—Towards Collaborative Farm Management with Wireless Sensor Networks. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015. [Google Scholar]
- Rivers, M.; Coles, N.; Zia, H.; Harris, N.; Yates, R. How could sensor networks help with agricultural water management issues? Optimizing irrigation scheduling through networked soil-moisture sensors. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015. [Google Scholar]
- Rathinam, D.D.K.; Surendran, D.; Shilpa, A.; Grace, A.S.; Sherin, J. Modern Agriculture Using Wireless Sensor Network (WSN). In Proceedings of the 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 515–519. [Google Scholar]
- González-Teruel, J.D.; Torres, R.; Blaya Ros, P.J.; Toledo-Moreo, A.; Jiménez-Buendía, M.; Soto, F. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a Service Model for Smart Cities Supported by Internet of Things. Eur. Trans. Telecommun. 2014. [Google Scholar] [CrossRef] [Green Version]
- Rajab, H.; Cinkler, T. IoT based Smart Cities. In Proceedings of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018. [Google Scholar]
- Yelamarthi, K.; Aman, M.S.; Abdelgawad, A. An Application-Driven Modular IoT Architecture. Wirel. Commun. Mob. Comput. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Zyrianoff, I.; Heideker, A.; Silva, D.; Kleinschmidt, J.; Soininen, J.P.; Cinotti, T.; Kamienski, C. Architecting and Deploying IoT Smart Applications: A Performance–Oriented Approach. Sensors 2020, 20, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgank, A. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service. Sensors 2020, 20, 21. [Google Scholar] [CrossRef] [Green Version]
- Abi Saab, M.T.; Jomaa, I.; Skaf, S.; Fahed, S.; Todorovic, M. Assessment of a Smartphone Application for Real-Time Irrigation Scheduling in Mediterranean Environments. Water 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Magalotti, D.; Placidi, P.; Dionigi, M.; Scorzoni, A.; Servoli, L. Experimental Characterization of a Personal Wireless Sensor Network for the Medical X-Ray Dosimetry. IEEE Trans. Instrum. Meas. 2016, 65, 1–10. [Google Scholar] [CrossRef]
- Torres, R.; Navarro-Hellín, H.; Guillamón, A.; San-Segundo, R.; Ruiz-Abellón, M.; Domingo-Miguel, R. A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques. Water 2020, 12, 548. [Google Scholar] [CrossRef] [Green Version]
- Gavilán, V.; Lillo, M.; Holzapfel, E.; Rivera, D.; García-Pedrero, A. Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data. Water 2019, 11, 2236. [Google Scholar] [CrossRef] [Green Version]
- García-Tejero, I.; ARÉVALO, C.; CONTRERAS, M.; MORENO, J.; Souza, L.; Tavira, S.; Durán Zuazo, V. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors 2018, 18, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekshmi, S.; Singh, D.; Shojaei Baghini, M. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Robinson, D.; Campbell, C.; Hopmans, J.; Hornbuckle, B.; Jones, S.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7. [Google Scholar] [CrossRef] [Green Version]
- Visconti, F.; De Paz, J.; Martínez, D.; Molina, M. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 2014, 132, 111–119. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K. Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor. Agric. Water Manag. 2019, 213, 568–579. [Google Scholar] [CrossRef]
- Barker, J.; Franz, T.; Heeren, D.; Neale, C.; Luck, J. Soil water content monitoring for irrigation management: A geostatistical analysis. Agric. Water Manag. 2017, 188. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.; Casada, M. Fringing Field Capacitance Sensor for Measuring the Moisture Content of Agricultural Commodities. Sens. J. IEEE 2008, 8, 240–247. [Google Scholar] [CrossRef]
- Tsamis, E.; Avaritsiotis, J. Design of planar capacitive type sensor for “water content” monitoring in a production line. Sens. Actuators A Phys. 2005, 118, 202–211. [Google Scholar] [CrossRef]
- Sweelssen, J.; Blokland, H.; Rajamäki, T.; Sarjonen, R.; Boersma, A. A Versatile Capacitive Sensing Platform for the Assessment of the Composition in Gas Mixtures. Micromachines 2020, 11, 116. [Google Scholar] [CrossRef] [Green Version]
- Sweelssen, J.; Blokland, H.; Rajamäki, T.; Boersma, A. Capacitive and Infrared Gas Sensors for the Assessment of the Methane Number of LNG Fuels. Sensors 2020, 20, 3345. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.; Stonard, A. A Printed Capacitance Sensor for Soil Moisture Measurement. Proceedings 2018, 2, 705. [Google Scholar] [CrossRef] [Green Version]
- Placidi, P.; Gasperini, L.; Grassi, A.; Cecconi, M.; Scorzoni, A. Characterization of Low-Cost Capacitive Soil Moisture Sensors for IoT Networks. Sensors 2020, 20, 3585. [Google Scholar] [CrossRef]
- Dilrukshi, E.A.A.; Nagahage, I.; Fujino, T. Calibration and Validation of a Low-Cost Capacitive Moisture Sensor to Integrate the Automated Soil Moisture Monitoring System. Agriculture 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, J.; Piai, J.; de França, J.; França, M.; Yamashita, K.; Mathias, L. Fringing Field Capacitive Sensor for Measuring Soil Water Content: Design, Manufacture, and Testing. IEEE Trans. Instrum. Meas. 2015, 64, 212–220. [Google Scholar] [CrossRef]
- Agilent Technologies, USA. Agilent Basics of Measuring the Dielectric Properties of Materials; Agilent Technologies: Santa Clara, CA, USA, 2006. [Google Scholar]
- Gevorgian, S.; Abadei, S. Analytic approximations for multilayer substrate coplanar-plate capacitors. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005. [Google Scholar]
- Gevorgian, S.; Linner, P.; Kollberg, E. Analytic approximation for open-end capacitance in symmetriccoplanar-strip waveguides. Electron. Lett. 2001, 37, 1226–1228. [Google Scholar] [CrossRef]
- Agilent Technologies, USA. Agilent Impedance Measurement Handbook, 4th ed.; Agilent Technologies: Santa Clara, CA, USA, 2009. [Google Scholar]
- Thierauf, S.C. High-Speed Circuit Board Signal Integrity; Artech House, Inc.: Norwood, MA, USA, 2004; Propagation of Electric Fields in Exposed Microstrip; pp. 195–196. [Google Scholar]
- Behzadi pour, G.; Golnabi, H. Investigation of Conductivity Effects on Capacitance Measurements of Water Liquids Using a Cylindrical Capacitive Sensor. J. Appl. Sci. 2010, 10. [Google Scholar] [CrossRef]
Dielectric Constant | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 77 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | W [MIL] | S [MIL] | C [pF] | Factor | Factor | Factor | Factor | Factor | Factor | Factor | Factor |
V1-1L | 5 | 5 | 307.18 | 1.60 | 1.98 | 2.22 | 2.40 | 2.52 | 2.62 | 2.70 | 2.74 |
V2-1L | 10 | 143.57 | 1.73 | 2.25 | 2.60 | 2.86 | 3.06 | 3.21 | 3.34 | 3.41 | |
V3-1L | 20 | 64.63 | 1.83 | 2.47 | 2.93 | 3.29 | 3.57 | 3.79 | 3.98 | 4.09 | |
V4-1L | 10 | 5 | 234.58 | 1.72 | 2.24 | 2.61 | 2.89 | 3.11 | 3.28 | 3.42 | 3.51 |
V5-1L | 10 | 128.00 | 1.85 | 2.51 | 3.01 | 3.40 | 3.71 | 3.96 | 4.17 | 4.30 | |
V6-1L | 20 | 61.97 | 1.94 | 2.73 | 3.34 | 3.84 | 4.26 | 4.60 | 4.90 | 5.08 | |
V7-1L | 20 | 5 | 165.13 | 1.83 | 2.51 | 3.02 | 3.44 | 3.78 | 4.07 | 4.31 | 4.46 |
V8-1L | 10 | 100.87 | 1.96 | 2.78 | 3.43 | 3.97 | 4.43 | 4.82 | 5.15 | 5.36 | |
V9-1L | 20 | 56.70 | 2.04 | 2.97 | 3.75 | 4.42 | 4.99 | 5.49 | 5.93 | 6.21 | |
V1-2L | 5 | 5 | 613.81 | 1.60 | 1.98 | 2.23 | 2.40 | 2.52 | 2.62 | 2.70 | 2.75 |
V2-2L | 10 | 286.50 | 1.73 | 2.25 | 2.60 | 2.86 | 3.06 | 3.22 | 3.35 | 3.42 | |
V3-2L | 20 | 128.33 | 1.84 | 2.48 | 2.95 | 3.31 | 3.59 | 3.82 | 4.01 | 4.12 | |
V4-2L | 10 | 5 | 468.40 | 1.72 | 2.25 | 2.62 | 2.90 | 3.11 | 3.28 | 3.43 | 3.51 |
V5-2L | 10 | 255.06 | 1.85 | 2.52 | 3.02 | 3.41 | 3.72 | 3.97 | 4.18 | 4.31 | |
V6-2L | 20 | 122.47 | 1.95 | 2.75 | 3.38 | 3.88 | 4.30 | 4.65 | 4.95 | 5.13 | |
V7-2L | 20 | 5 | 328.80 | 1.84 | 2.51 | 3.03 | 3.45 | 3.79 | 4.08 | 4.33 | 4.48 |
V8-2L | 10 | 199.87 | 1.97 | 2.79 | 3.46 | 4.00 | 4.46 | 4.85 | 5.19 | 5.41 | |
V9-2L | 20 | 110.52 | 2.06 | 3.03 | 3.83 | 4.51 | 5.10 | 5.61 | 6.07 | 6.35 |
Dielectric Constant | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 77 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | W [MIL] | S [MIL] | T [mm] | C [pF] | C [pF] | C [pF] | C [pF] | C [pF] | C [pF] | C [pF] | C [pF] | C [pF] |
V1-2L | 5 | 5 | 0.4 | 589.98 | 958.29 | 1193.55 | 1345.06 | 1451.02 | 1529.28 | 1589.50 | 1637.28 | 1665.24 |
0.8 | 611.76 | 978.73 | 1213.34 | 1364.51 | 1470.14 | 1548.25 | 1608.30 | 1655.95 | 1683.86 | |||
1.6 | 613.81 | 980.39 | 1214.88 | 1365.89 | 1471.54 | 1549.60 | 1609.63 | 1657.28 | 1685.19 | |||
2 | 614.04 | 980.55 | 1215.03 | 1366.07 | 1471.67 | 1549.70 | 1609.73 | 1657.38 | 1685.27 | |||
V4-2L | 10 | 5 | 0.4 | 425.71 | 764.96 | 1011.47 | 1186.00 | 1316.48 | 1417.98 | 1499.23 | 1565.77 | 1605.60 |
0.8 | 464.14 | 802.47 | 1048.50 | 1222.57 | 1352.84 | 1454.14 | 1535.24 | 1601.63 | 1641.40 | |||
1.6 | 468.40 | 806.35 | 1052.19 | 1226.13 | 1356.31 | 1457.51 | 1538.52 | 1604.90 | 1644.63 | |||
2 | 468.69 | 806.60 | 1052.44 | 1226.37 | 1356.52 | 1457.75 | 1538.72 | 1605.03 | 1644.77 | |||
V7-2L | 20 | 5 | 0.4 | 270.25 | 546.26 | 768.84 | 940.38 | 1077.84 | 1190.86 | 1285.61 | 1366.26 | 1415.97 |
0.8 | 317.29 | 593.05 | 815.41 | 986.82 | 1124.10 | 1237.01 | 1331.67 | 1412.26 | 1461.92 | |||
1.6 | 328.80 | 604.25 | 826.45 | 997.68 | 1134.86 | 1247.67 | 1342.25 | 1422.77 | 1472.39 | |||
2 | 329.44 | 604.86 | 827.05 | 998.26 | 1135.43 | 1248.23 | 1342.77 | 1423.30 | 1472.92 |
Simulation | Measurement | Error | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sensor | W [MIL] | S [MIL] | AIR [%] | WATER [%] | ||||||
V1-1L | 5 | 5 | 307.18 | 842.67 | 46.22 | 289.34 | 9.57 | 809.76 | 5.81% | 3.91% |
V2-1L | 10 | 143.57 | 490.17 | 61.48 | 129.73 | 26.54 | 536.87 | 9.64% | 9.53% | |
V3-1L | 20 | 64.63 | 264.61 | |||||||
V4-1L | 10 | 5 | 234.58 | 822.51 | 51.19 | 219.21 | 14.09 | 757.60 | 6.55% | 7.89% |
V5-1L | 10 | 128.00 | 550.26 | 63.12 | 118.83 | 28.71 | 605.78 | 7.17% | 10.09% | |
V6-1L | 20 | 61.97 | 314.81 | |||||||
V7-1L | 20 | 5 | 165.13 | 736.70 | 55.54 | 149.87 | 23.48 | 694.62 | 9.24% | 5.71% |
V8-1L | 10 | 100.87 | 540.91 | 69.98 | 97.55 | 40.25 | 574.12 | 3.29% | 6.14% | |
V9-1L | 20 | 56.70 | 352.25 | |||||||
V1-2L | 5 | 5 | 613.81 | 1685.19 | 40.45 | 563.12 | 10.61 | 1632.41 | 8.26% | 3.13% |
V2-2L | 10 | 286.50 | 980.07 | 46.45 | 263.12 | 9.35 | 1086.00 | 8.16% | 10.81% | |
V3-2L | 20 | 128.33 | 528.75 | |||||||
V4-2L | 10 | 5 | 468.40 | 1644.63 | 41.47 | 423.76 | 9.36 | 1694.01 | 9.53% | 3.00% |
V5-2L | 10 | 255.06 | 1099.96 | 46.49 | 230.58 | 15.85 | 1199.90 | 9.60% | 9.09% | |
V6-2L | 20 | 122.47 | 628.69 | |||||||
V7-2L | 20 | 5 | 328.80 | 1472.39 | 45.20 | 302.76 | 21.51 | 1597.81 | 7.92% | 8.52% |
V8-2L | 10 | 199.87 | 1080.37 | 48.60 | 194.26 | 35.13 | 1185.11 | 2.80% | 9.69% | |
V9-2L | 20 | 110.52 | 702.11 |
Simulation | Measurement | Error | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | W [MIL] | S [MIL] | T [mm] | AIR [%] | WATER [%] | ||||||
V1-2L | 5.00 | 5.00 | 0.40 | 589.98 | 1665.24 | ||||||
0.80 | 611.76 | 1683.86 | 41.69 | 564.76 | 9.12 | 1870.90 | 8.76% | 9.99% | |||
1.60 | 613.81 | 1685.19 | 40.45 | 563.12 | 10.61 | 1632.41 | 9.02% | 4.26% | |||
2.00 | 614.04 | 1685.27 | |||||||||
V4-2L | 10.00 | 5.00 | 0.40 | 425.71 | 1605.60 | ||||||
0.80 | 464.14 | 1641.40 | 43.16 | 432.09 | 17.91 | 1758.21 | 7.99% | 5.87% | |||
1.60 | 468.40 | 1644.63 | 41.47 | 423.76 | 9.36 | 1694.01 | 10.58% | 1.80% | |||
2.00 | 468.69 | 1644.77 | |||||||||
V7-2L | 20.00 | 5.00 | 0.40 | 270.25 | 1415.97 | ||||||
0.80 | 317.29 | 1461.92 | 46.60 | 298.43 | 23.98 | 1559.21 | 7.04% | 5.41% | |||
1.60 | 328.80 | 1472.39 | 45.20 | 302.76 | 21.51 | 1597.81 | 8.99% | 7.26% | |||
2.00 | 329.44 | 1472.92 |
Analytical | Simulation | Measurement | ||||||
---|---|---|---|---|---|---|---|---|
Sensor | Environment | |||||||
V1-1L | AIR | 289.34 | 2.84 | 2.83 | 2.67 | 2.70 | 2.58 | 2.53 |
WATER | 809.76 | 2.17 | 2.16 | 2.08 | 2.12 | 2.04 | 1.99 | |
V4-1L | AIR | 219.21 | 3.01 | 2.97 | 2.72 | 2.86 | 2.70 | 2.63 |
WATER | 757.60 | 2.20 | 2.19 | 2.12 | 2.18 | 2.08 | 2.05 | |
V2-2L | AIR | 263.12 | 2.90 | 2.88 | 2.69 | 2.74 | 2.60 | 2.57 |
WATER | 1086.11 | 2.03 | 2.01 | 1.95 | 2.04 | 1.96 | 1.92 | |
V5-2L | AIR | 230.58 | 2.98 | 2.95 | 2.72 | 2.78 | 2.66 | 2.60 |
WATER | 1199.90 | 1.99 | 1.97 | 1.89 | 1.98 | 1.92 | 1.88 | |
V8-2L | AIR | 194.26 | 3.06 | 3.02 | 2.74 | 2.86 | 2.68 | 2.64 |
WATER | 1185.11 | 2.00 | 1.97 | 1.91 | 1.98 | 1.92 | 1.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petre, A.-R.; Craciunescu, R.; Fratu, O. Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor. Sensors 2020, 20, 5644. https://doi.org/10.3390/s20195644
Petre A-R, Craciunescu R, Fratu O. Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor. Sensors. 2020; 20(19):5644. https://doi.org/10.3390/s20195644
Chicago/Turabian StylePetre, Adrian-Razvan, Razvan Craciunescu, and Octavian Fratu. 2020. "Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor" Sensors 20, no. 19: 5644. https://doi.org/10.3390/s20195644
APA StylePetre, A. -R., Craciunescu, R., & Fratu, O. (2020). Design, Implementation and Simulation of a Fringing Field Capacitive Humidity Sensor. Sensors, 20(19), 5644. https://doi.org/10.3390/s20195644