Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns
Abstract
:1. Introduction
2. Methodology
2.1. Step 1
2.2. Step 2
2.3. Step 3
2.4. Step 4
3. Results
3.1. Synthetic Data
3.2. Real-World Dataset
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Vishvanathan, S.; Kp, S.; Hassaballah, M. Hyperspectral Image: Fundamentals and Advances. In Recent Advances in Computer Vision. Studies in Computational Intelligence; Hassaballah, M., Hosny, K., Eds.; Springer: Cham, Switzerland, 2019; Volume 804, pp. 401–424. [Google Scholar] [CrossRef]
- Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote. Sens. 2018, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S. Principles of Remote Sensing, Satellite Remote Sensing and GIS Applications in Agricultural Meteorology. In Proceedings of the Training Workshop, Dehra Dun, India, 7–11 July 2003; AGM-8, WMO/TD-No. 1182 Dun. Sivakumar, M.V.K., Roy, P.S., Harmsen, K., Saha, S.K., Eds.; pp. 22–38. [Google Scholar]
- Kairu, E. An introduction to remote sensing. GeoJournal 1982, 6, 251–260. [Google Scholar] [CrossRef]
- Mankar, R.; Mayerich, D.; Han, Z. Hyperspectral-Multispectral Image Fusion with Weighted LASSO. arXiv 2020, arXiv:2003.06944. [Google Scholar]
- Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Feng, X.; He, L.; Cheng, Q.; Long, X.; Yuan, Y. Hyperspectral and Multispectral Remote Sensing Image Fusion Based on Endmember Spatial Information. Remote Sens. 2020, 12, 1009. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.M.; Ortega, A. Chapter 10—Distributed compression of hyperspectral imagery. In Distributed Source Coding; Wiley: Hoboken, NJ, USA, 2009; pp. 269–292. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Q.; Dong, J.; Xu, Q. Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. Remote Sens. 2018, 10, 1271. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiao, H. Distributed Compressed Hyperspectral Sensing Imaging Based on Spectral Unmixing. Sensors 2020, 20, 2305. [Google Scholar] [CrossRef] [Green Version]
- Phan, A.H.; Cichocki, A. Tensor decompositions for feature extraction and classification of high dimensional datasets, Nonlinear Theory and Its Applications. IEICE 2010, 1, 37–68. [Google Scholar] [CrossRef] [Green Version]
- Jouni, M.; Mura, M.D.; Comon, P. Hyperspectral Image Classification Using Tensor CP Decomposition. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019, Yokohama, Japan, 28 July–2 August 2019; pp. 1164–1167. [Google Scholar]
- Makantasis, K.; Doulamis, A.D.; Doulamis, N.D.; Nikitakis, A. Tensor-Based Classification Models for Hyperspectral Data Analysis. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 6884–6898. [Google Scholar] [CrossRef]
- Liu, H.; Xia, K.; Li, T.; Ma, J.; Owoola, E. Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial–Spectral Weight Manifold Embedding. Sensors 2020, 20, 4413. [Google Scholar] [CrossRef]
- Ibarrola-Ulzurrun, E.; Drumetz, L.; Marcello, J.; Gonzalo-Martín, C.; Chanussot, J. Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 4775–4788. [Google Scholar] [CrossRef]
- Villa, A.; Chanussot, J.; Benediktsson, J.A.; Jutten, C. Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution. IEEE J. Sel. Top. Signal Process. 2011, 5, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Plaza, A.; Martinez, P.; Perez, R.; Plaza, J. A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognit. 2004, 37, 1097–1116. [Google Scholar] [CrossRef]
- Oğuz, O.; Cetin, A.; Cetin-Atalay, R. Classification of Hematoxylin and Eosin Images Using Local Binary Patterns and 1-D SIFT Algorithm. Proceedings 2018, 2, 94. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Duan, H. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sens. 2018, 10, 441. [Google Scholar] [CrossRef]
- Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors 2019, 19, 3929. [Google Scholar] [CrossRef] [Green Version]
- Geometry in Action. Available online: https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html (accessed on 31 August 2020).
- Gentile, C.; Sznaier, M. An improved Voronoi-diagram-based neural net for pattern classification. IEEE Trans. Neural Netw. 2001, 12, 1227–1234. [Google Scholar] [CrossRef]
- Martinez, A.; Martinez, J.; Pérez-Rosés, H.; Quirós, R. Image Processing using Voronoi diagrams. In Proceedings of the 2007 International Conference on Image Processing, Computer Vision & Pattern Recognition, IPCV 2007, Las Vegas, NV, USA, 25–28 June 2007; pp. 485–491. [Google Scholar]
- Lee, I.; Kyungmi, L.; Christopher, T.B. Voronoi Image Segmentation and Its Applications to Geoinformatics. J. Comput. 2009, 4, 1101–1108. [Google Scholar] [CrossRef]
- Young, W.; Nykl, S.; Weckman, G.; Chelberg, D. Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets. Neural Comput. Appl. 2014, 26, 1041–1054. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Vanderplas, J. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- SCIKIT. Learn: Machine Learning in Python—Scikit-Learn 0.16.1 Documentation. Available online: https://scikit-learn.org/ (accessed on 31 August 2020).
- Bejar, J. Consensus Clustering (Course Slides); URL-Spring 2020; CS–MAI. Available online: https://www.cs.upc.edu/bejar/URL/material/06-Consensus.pdf (accessed on 31 August 2020).
- Celeux, G.; Diday, E.; Govaert, G.; Lechevallier, Y.; Ralambondrainy, H. Classification Automatique Des Donnees; Dunod Informatique. ISBN-13: 978-2040187989; ISBN-10: 2040187987. Available online: https://www.cs.upc.edu/~bejar/URL/material/06-Consensus.pdf (accessed on 31 August 2020).
- Tamara Kolda, B.W. Tensor Decompositions and Applications. Soc. Ind. Appl. Math. 2009, 51, 455–500. [Google Scholar]
- Gogineni, R.; Chaturvedi, A. Hyperspectral Image Classification. In Processing and Analysis of Hyperspectral Data; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, R.; Ghassemian, H. Sparsity Constrained Graph Regularized NMF for Spectral Unmixing of Hyperspectral Data. J. Indian Soc. Remote. Sens. 2014, 43, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Xiong, F.; Zeng, S.; Zhou, J.; Tang, Y.Y. Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 1776–1792. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Lan, J.; Zhang, Y.; Zou, J. Spectral Unmixing of Hyperspectral Remote Sensing Imagery via Preserving the Intrinsic Structure Invariant. Sensors 2018, 18, 3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NUMXL SUPPORT, HISTBINS—Number of Histogram Bins. 2016. Available online: https://support.numxl.com/hc/en-us/articles/216034163-HISTBINS-Number-of-Histogram-Bins (accessed on 31 August 2020).
- Matlab, MathWorks—MATLAB & Simulink R2018b. Available online: https://www.mathworks.com (accessed on 31 August 2020).
- Costa, J.; Rao, P. Central partition for a partition-distance and strong pattern graph. Revstat Stat. J. 2004, 2, 127–143. [Google Scholar]
- Van Kreveld, M.; Schwarzkopf, O.; de Berg, M.; Overmars, M. Computational Geometry, Algorithms and Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-77974-2. [Google Scholar] [CrossRef]
- Earthexplorer.usgs.gov, U.S. Geological Survey, USGS. 2019. Available online: https://earthexplorer.usgs.gov (accessed on 31 August 2020).
- USGS EROS Archive—Earth Observing One (EO-1)-Hyperion. 2020. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion?qt-science_center_objects=0#qt-science_center_objects (accessed on 31 August 2020).
- Google Maps. Available online: https://www.google.ro/maps (accessed on 31 August 2020).
- Kowcika, A.; Uma Maheswari, G.T.V. Context Specific Event Model For News Articles Context Specific Event Model For News Articles. arXiv 2013, arXiv:1308.0897. [Google Scholar]
- SciPy Hierarchical Clustering and Dendrogram Tutorial, Jörn’s Blog. Available online: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ (accessed on 31 August 2020).
Epsilon () | Purity (p%) | Error | Number of Nodes |
---|---|---|---|
0.1 | 30 | 18.021% | 2534 |
0.1 | 50 | 15.734% | 3500 |
0.1 | 70 | 10.095% | 24,492 |
0.1 | 90 | 7.141% | 36,586 |
0.01 | 30 | 10.116% | 25,489 |
0.01 | 50 | 7.490% | 35,433 |
0.01 | 70 | 6.505% | 38,743 |
0.01 | 90 | 6.490% | 38,794 |
0.001 | 30 | 7.050% | 36,983 |
0.001 | 50 | 6.601% | 38,431 |
0.001 | 70 | 6.488% | 38,801 |
0.001 | 90 | 6.488% | 38,801 |
0.0001 | 30 | 6.588% | 38,447 |
0.0001 | 50 | 6.523% | 38,677 |
0.0001 | 70 | 6.488% | 38,801 |
0.0001 | 90 | 6.488% | 38,801 |
CF(7) | 1 | 2 | 3 | 4 | 5 | CF(9) | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 84 | 82 | 80 | 32,554 | 76 | 1 | 84 | 82 | 76 | 80 | 32,554 | |
2 | 0 | 6355 | 0 | 156 | 0 | 2 | 0 | 6355 | 0 | 0 | 156 | |
3 | 0 | 0 | 7075 | 141 | 0 | 3 | 0 | 0 | 0 | 7075 | 141 | |
4 | 7313 | 0 | 0 | 190 | 0 | 4 | 7313 | 0 | 0 | 0 | 190 | |
5 | 0 | 0 | 0 | 135 | 6260 | 5 | 0 | 0 | 6260 | 0 | 135 |
Epsilon () | Purity (p%) | Error | Number of Nodes |
---|---|---|---|
0.1 | 30 | 10.901% | 2812 |
0.1 | 50 | 7.900% | 6077 |
0.1 | 70 | 4.929% | 17,642 |
0.1 | 90 | 3.685% | 26,791 |
0.01 | 30 | 4.817% | 18,933 |
0.01 | 50 | 3.407% | 30,437 |
0.01 | 70 | 2.774% | 37,938 |
0.01 | 90 | 2.732% | 38,682 |
0.001 | 30 | 3.048% | 35,332 |
0.001 | 50 | 2.798% | 38,015 |
0.001 | 70 | 2.725% | 38,787 |
0.001 | 90 | 2.725% | 38,799 |
0.0001 | 30 | 2.786% | 38,229 |
0.0001 | 50 | 2.747% | 38,647 |
0.0001 | 70 | 2.725% | 38,800 |
0.0001 | 90 | 2.725% | 38,800 |
0.00001 | 30 | 2.759% | 38,568 |
0.00001 | 50 | 2.743% | 38,698 |
0.00001 | 70 | 2.725% | 38,801 |
0.00001 | 90 | 2.725% | 38,801 |
Data Set/Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Silh. Score |
---|---|---|---|---|---|---|---|---|
Hierarchical (centroid) | 11.11% | 9.30% | 12.88% | 53.54% | 13.16% | 54.08% | ||
Hierarchical (average) | 11.11% | 9.30% | 12.88% | 53.54% | 13.16% | 54.08% | ||
Hierarchical (complete) | 10.23% | 34.01% | 5.52% | 16.88% | 33.36% | 65.16% | ||
Hierarchical (ward) | 14.68% | 28.70% | 15.41% | 17.00% | 24.21% | 67.98% | ||
K-means (K-means++) | 18.73% | 12.03% | 25.86% | 14.54% | 28.84% | 70.28% | ||
K-means (random) | 14.71% | 12.21% | 24.78% | 19.31% | 28.99% | 70.16% | ||
Mean-shift | 30.91% | 34.24% | 10.32% | 15.32% | 9.21% | 71.26% | ||
K-means (random) | 13.12% | 12.57% | 9.91% | 16.78% | 25.02% | 22.61% | 70.33% | |
K-means (random) | 12.06% | 11.08% | 20.88% | 18.48% | 13.55% | 9.45% | 14.50% | 72.62% |
Class | Water | Vegetation 1 | Sand/Ground | Clouds | Vegetation 2 |
---|---|---|---|---|---|
Number | 9422 (15.57%) | 24,754 (40.91%) | 3655 (6.04%) | 14,052 (23.22%) | 8618 (14.24%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilius, L.B.; Pentiuc, Ş.G. Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns. Sensors 2020, 20, 5684. https://doi.org/10.3390/s20195684
Bilius LB, Pentiuc ŞG. Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns. Sensors. 2020; 20(19):5684. https://doi.org/10.3390/s20195684
Chicago/Turabian StyleBilius, Laura Bianca, and Ştefan Gheorghe Pentiuc. 2020. "Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns" Sensors 20, no. 19: 5684. https://doi.org/10.3390/s20195684
APA StyleBilius, L. B., & Pentiuc, Ş. G. (2020). Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns. Sensors, 20(19), 5684. https://doi.org/10.3390/s20195684