Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes
Abstract
:1. Introduction
- A significant part of this research is to use the commercial smart wearable devices as the measurement device incorporated with the other sensors and actuators to build and propose the generic CPHCS framework;
- Besides the environmental factors, the physiology parameter from the heart rate is well-studied and its correlation with the environmental factors, i.e., PMV, air speed, temperature, and humidity are deeply investigated to reveal the thermal comfort level of the plain air-conditioner (Air-con) and EETCC systems in the smart home environment; and
- Through the questionnaire method, the subjective comfort level (SCL) of the human thermal comfort is directly obtained and verified with the thermal comfort level of the EETCC systems. In this way, a generic human thermal comfort model that can be applied to the CPHCS framework is attained in which the coefficients of this model can be fine-tuned to well-fix to the individual thermal comfort.
2. Background
2.1. Smart Homes
2.2. Cyber–Physical Systems
2.3. Human Thermal Comfort
2.4. Energy Efficient and Thermal Comfort Control
3. Cyber–Physical Human Centric Systems
4. Experiment Study
4.1. Experiment Setup
4.1.1. Content and Participants
4.1.2. iHouse Environment
4.1.3. Subjective Comfort Level
4.2. Experimental Procedure
5. Results and Discussion
5.1. Statistical Results
5.2. Correlation Co-efficient among Environment Parameters and Heart Rate
5.3. Thermal Comfort Assessment
5.4. Control State and Thermal Comfort
5.5. Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CPS | Cyber–physical systems |
CPHS | Cyber–physical home system |
HVAC | Heating, ventilation, and air conditioning |
CPSS | Cyber–physical social system |
CPHCS | Cyber–physical human centric system |
EETCC | Energy efficient and thermal comfort control |
PMV | Predicted mean vote |
PPD | Predicted percentage of dissatisfied |
SCL | Subjective comfort level |
References
- Lee, E.A. The past, present and future of cyber-physical systems: A focus on models. Sensors 2015, 15, 4837–4869. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Ooi, S.E.; Makino, Y.; Kin, T.T.; Rayner, A.; Tan, Y. Implementation of energy efficient thermal comfort control for cyber-physical home systems. Adv. Sci. Lett. 2017, 23, 11530–11534. [Google Scholar]
- Ooi, S.E.; Fang, Y.; Lim, Y.; Tan, Y. Study of Adaptive Model Predictive Control for Cyber-Physical Home Systems. In Computational Science and Technology; Alfred, R., Lim, Y., Haviluddin, H., Chin, K.O., Eds.; Springer: Singapore, 2019; Volume 481, pp. 165–174. [Google Scholar]
- Chen, S.; Liu, T.; Gao, F.; Ji, J.; Xu, Z.; Qian, B.; Wu, H.; Guan, X. Butler, not servant: A human-centric smart home energy management system. IEEE Commun. Mag. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal comfort. Analysis and applications in environmental engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Standard, A. Standard 55-2013 Thermal environmental conditions for human occupancy; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Luo, M.; de Dear, R.; Ji, W.; Bin, C.; Lin, B.; Ouyang, Q.; Zhu, Y. The dynamics of thermal comfort expectations: The problem, challenge and impication. Build. Environ. 2016, 95, 322–329. [Google Scholar] [CrossRef]
- Okamoto, T.; Tamura, K.; Miyamoto, N.; Tanaka, S.; Futaeda, T. Physiological activity in calm thermal indoor environments. Sci. Rep. 2017, 7, 11519. [Google Scholar] [CrossRef] [Green Version]
- Nkurikiyeyezu, K.N.; Suzuki, Y.; Lopez, G.F. Heart rate variability as a predictive biomarker of thermal comfort. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1465–1477. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Liu, Z.; Li, D.; Kou, G.; Li, C. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Sci. Total Environ. 2018, 616, 1124–1133. [Google Scholar] [CrossRef]
- Hasan, M.H.; Alsaleem, F.M.; Rafaie, M. Sensitivity Analysis for the PMV Thermal Comfort Model and the Use of Wearable Devices to Enhance Its Accuracy. In Proceedings of the 4th International High Performance Buildings Conference at Purdue, West Lafayette, IN, USA, 11–14 July 2016. [Google Scholar]
- Zhu, Y.; Ouyang, Q.; Cao, B.; Zhou, X.; Yu, J. Dynamic thermal environment and thermal comfort. Indoor Air 2016, 26, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Application of IoT and Machine Learning techniques for the assessment of thermal comfort perception. Energy Procedia 2018, 148, 798–805. [Google Scholar] [CrossRef]
- Kobiela, F.; Shen, R.; Schweiker, M.; Dürichen, R. Personal thermal perception models using skin temperatures and HR/HRV features: comparison of smartwatch and professional measurement devices. In Proceedings of the 23rd International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 96–105. [Google Scholar]
- Georgiou, K.; Larentzakis, A.V.; Khamis, N.N.; Alsuhaibani, G.I.; Alaska, Y.A.; Giallafos, E.J. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Medica 2018, 60, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit. Med. 2019, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Nagai, Y.; Fang, Y.; Maekawa, M. Interactive technology embedded in fashion emotional design: Case study on interactive clothing for couples. Int. J. Cloth. Sci. Technol. 2018, 30, 302–319. [Google Scholar] [CrossRef]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Benefits and risks of smart home technologies. Energy Policy 2017, 103, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Alaa, M.; Zaidan, A.; Zaidan, B.; Talal, M.; Kiah, M.L.M. A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 2017, 97, 48–65. [Google Scholar] [CrossRef]
- Liu, L.; Stroulia, E.; Nikolaidis, I.; Miguel-Cruz, A.; Rincon, A.R. Smart homes and home health monitoring technologies for older adults: A systematic review. Int. J. Med. Inform. 2016, 91, 44–59. [Google Scholar] [CrossRef]
- Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A review of smart homes—Past, present, and future. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42, 1190–1203. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Carlucci, S.; Löfström, E. A review of systems and technologies for smart homes and smart grids. Energies 2016, 9, 348. [Google Scholar] [CrossRef] [Green Version]
- Stojkoska, B.L.R.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 2017, 140, 1454–1464. [Google Scholar] [CrossRef]
- Kidd, C.D.; Orr, R.; Abowd, G.D.; Atkeson, C.G.; Essa, I.A.; MacIntyre, B.; Mynatt, E.; Starner, T.E.; Newstetter, W. The aware home: A living laboratory for ubiquitous computing research. In International Workshop on Cooperative Buildings; Springer: Berlin/Heidelberg, Germany, 1999; pp. 191–198. [Google Scholar]
- Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems: A Cyber-Physical Systems Approach; Mit Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Derler, P.; Lee, E.A.; Tripakis, S.; Törngren, M. Cyber-physical system design contracts. In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, Philadelphia, PA, USA, 8–11 April 2013; pp. 109–118. [Google Scholar]
- He, J.F. Cyber-physical systems. Commun. China Comput. Fed. 2010, 6, 25–29. (In Chinese) [Google Scholar]
- Liu, Y.; Peng, Y.; Wang, B.; Yao, S.; Liu, Z. Review on cyber-physical systems. IEEE/CAA J. Autom. Sin. 2017, 4, 27–40. [Google Scholar] [CrossRef]
- ISO 7730. Ergonomics of the thermal environment. In Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Halawa, E.; Van Hoof, J. The adaptive approach to thermal comfort: A critical overview. Energy Build. 2012, 51, 101–110. [Google Scholar] [CrossRef]
- Van Craenendonck, S.; Lauriks, L.; Vuye, C.; Kampen, J. A review of human thermal comfort experiments in controlled and semi-controlled environments. Renew. Sustain. Energy Rev. 2018, 82, 3365–3378. [Google Scholar] [CrossRef]
- Ueda, K.; Tamai, M.; Yasumoto, K. A method for recognizing living activities in homes using positioning sensor and power meters. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 354–359. [Google Scholar]
- Ghazali, T.K.; Zakaria, N.H. Security, Comfort, Healthcare, and Energy Saving: A Review on Biometric Factors for Smart Home Environment. J. Comput. 2018, 29, 189–208. [Google Scholar]
- Vanus, J.; Martinek, R.; Bilik, P.; Zidek, J.; Skotnicova, I. Evaluation of thermal comfort of the internal environment in smart home using objective and subjective factors. In Proceedings of the 17th International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 16–18 May 2016; pp. 1–5. [Google Scholar]
- Cheng, Z.; Shein, W.W.; Tan, Y.; Lim, A.O. Energy efficient thermal comfort control for cyber-physical home system. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 797–802. [Google Scholar]
- Liu, Z.; Yang, D.S.; Wen, D.; Zhang, W.M.; Mao, W. Cyber-physical-social systems for command and control. IEEE Intell. Syst. 2011, 26, 92–96. [Google Scholar] [CrossRef]
- Higashino, T.; Uchiyama, A. A study for human centric cyber physical system based sensing–toward safe and secure urban life–. In International Workshop on Information Search, Integration, and Personalization; Springer: Berlin/Heidelberg, Germany, 2012; pp. 61–70. [Google Scholar]
- Schirner, G.; Erdogmus, D.; Chowdhury, K.; Padir, T. The future of human-in-the-loop cyber-physical systems. Computer 2013, 46, 36–45. [Google Scholar] [CrossRef]
- Sowe, S.K.; Simmon, E.; Zettsu, K.; de Vaulx, F.; Bojanova, I. Cyber-physical-human systems: Putting people in the loop. IT Prof. 2016, 18, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, S.; Hoyt, T.; Piccioli, A. Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build. Simul. 2014, 7, 321–334. [Google Scholar] [CrossRef]
Cold | Cool | Slightly Cool | Neutral | Slightly Warm | Warm | Hot |
---|---|---|---|---|---|---|
−3 | −2 | −1 | 0 | +1 | +2 | +3 |
State | Air-Conditioner | Window | Curtain |
---|---|---|---|
S1 | 0 | 0 | 0 |
S2 | 0 | 0 | 1 |
S3 | 0 | 1 | 0 |
S4 | 0 | 1 | 1 |
S5 | 1 | 0 | 0 |
S6 | 1 | 0 | 1 |
NO. | Gender | Age (y) | Height (cm) | Weight (kg) | BMI (kg/m2) | Test Period | Avg. Indoor Temperature (°C) | Avg. Relative Humidity (%) |
---|---|---|---|---|---|---|---|---|
F1 | Female | 38 | 174 | 59 | 19.5 | May 30 May 31 | 25.2 26.5 | 48.5 45.9 |
F2 | Female | 23 | 154 | 47 | 19.8 | July 19 | 25.9 | 49.6 |
M1 | Male | 26 | 170 | 56 | 19.4 | May 30 May 31 | 25.2 26.5 | 48.5 45.9 |
M2 | Male | 23 | 175 | 65 | 21.2 | June 28 | 27.1 | 50.9 |
M3 | Male | 24 | 182 | 95 | 28.7 | June 28 | 27.1 | 50.9 |
C1 | Female | 8 | 137 | 27 | 14.4 | July 21 | 28.3 | 51.0 |
Type | Name | Range | Parameter |
---|---|---|---|
Indoor temperature sensor | SHT75 digital sensor | [−40, 125] °C ± 0.3 °C | 14-bit ADC signal processing |
Relative humidity sensor | SHT75 digital sensor | [0,100]% ± 1.8% | 14-bit ADC signal processing |
Air velocity sensor | hot-wire anemometer sensor | [0.015,5] m/s ± 0.2% | - |
Wearable device | Apple watch series 4 | [30, 210] bpm | 64-bit dual-core CPU processor, 16 GB capacity |
Participation Number | Date and Time | Thermal Sensation | Scale |
---|---|---|---|
F1 | 2019/05/30 10:27:01 | Hot | 3 |
M1 | 2019/06/28 14:05:34 | Warm | 2 |
Set | Session | Participant | Contents | Total of Datasets | Total of Samples |
---|---|---|---|---|---|
Set1 | Morning Afternoon | F1, M1 | Air-con is set to 20 and 25 °C alternatively in every 30 min Fill the SCL card in every 30 min | 4 | 2880 |
Set2 | Morning Afternoon | F1, F2, M1 M2, M3, C1 | Air-con is controlled by EETCC automatically Fill the SCL card in any time | 12 | 8640 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Lim, Y.; Ooi, S.E.; Zhou, C.; Tan, Y. Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes. Sensors 2020, 20, 372. https://doi.org/10.3390/s20020372
Fang Y, Lim Y, Ooi SE, Zhou C, Tan Y. Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes. Sensors. 2020; 20(2):372. https://doi.org/10.3390/s20020372
Chicago/Turabian StyleFang, Yuan, Yuto Lim, Sian En Ooi, Chenmian Zhou, and Yasuo Tan. 2020. "Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes" Sensors 20, no. 2: 372. https://doi.org/10.3390/s20020372
APA StyleFang, Y., Lim, Y., Ooi, S. E., Zhou, C., & Tan, Y. (2020). Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes. Sensors, 20(2), 372. https://doi.org/10.3390/s20020372