Magnetoelastic Humidity Sensors with TiO2 Nanotube Sensing Layers
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of TiO2-NTs
2.2. Measurement Systems
2.3. Magnetoelastic Sensor Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grimes, C.A.; Sommath, C.R.; Rani, S.; Qingyun, C. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review. Sensors 2011, 11, 2809–2844. [Google Scholar] [CrossRef] [PubMed]
- Grimes, C.A.; Mungle, C.S.; Zeng, K.; Jain, M.K.; Dreschel, W.R.; Paulose, M.; Ong, K.G. Wireless magnetoelastic resonance sensors: A critical review. Sensors 2002, 2, 294–313. [Google Scholar] [CrossRef] [Green Version]
- Staruch, M.; Kassner, C.; Fackler, S.; Takeuchi, I.; Bussmann, K.; Lofland, S.E.; Dolabdjian, C.; Lacomb, R.; Finkel, P. Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators. Appl. Phys. Lett. 2015, 107, 032909. [Google Scholar] [CrossRef] [Green Version]
- Stoyanov, P.G.; Grimes, C.A. A remote query magnetostrictive viscosity sensor. Sens. Actuators A Phys. 2000, 80, 8–14. [Google Scholar] [CrossRef]
- Kouzoudis, D.; Grimes, C.A. The frequency response of magnetoelastic sensors to stress and atmospheric pressure. Smart Mater. Struct. 2000, 8, 885–889. [Google Scholar] [CrossRef]
- Atalay, S.; Kolat, V.S.; Atalay, F.E.; Bayri, N.; Kaya, H.; Izgi, T. Magnetoelastic sensor for magnetic nanoparticle detection. J. Magn. Magn. Mater. 2018, 465, 151–155. [Google Scholar] [CrossRef]
- Pang, P.F.; Zhang, Y.L.; Ge, S.T.; Cai, Q.Y.; Yao, S.Z.; Grimes, C.A. Determination of glucose using bienzyme layered assembly magnetoelastic sensing device. Sens. Actuators B Chem. 2009, 136, 310–314. [Google Scholar] [CrossRef]
- Grimes, C.A.; Kouzoudis, D.; Mungle, C. Simultaneous measurement of liquid density and viscosity using remote query magnetoelastic sensors. Rev. Sci. Instrum. 2000, 71, 3822–3824. [Google Scholar] [CrossRef]
- Atalay, S.; Kolat, V.S.; Bayri, N.; Izgi, T. Magnetoelastic Sensor Studies on Amorphous Magnetic FeSiB Wire and the Application in Viscosity Measurement. J. Supercond. Novel Magn. 2016, 29, 1551–1556. [Google Scholar] [CrossRef]
- Loiselle, K.T.; Grimes, C.A. Viscosity measurements of viscous liquids using magnetoelastic thick-film sensors. Rev. Sci. Instrum. 2000, 71, 1441–1446. [Google Scholar] [CrossRef]
- Jain, M.K.; Schmidt, S.; Grimes, C.A. Magneto-acoustic sensors for measurement of liquid temperature. viscosity and density. Appl. Acoust. 2001, 62, 1001–1011. [Google Scholar] [CrossRef]
- Kouzoudis, D.; Grimes, C.A. Remote query fluid-flow velocity measurement using magnetoelastic sensors. J. Appl. Phys. 2000, 87, 6301–6303. [Google Scholar] [CrossRef]
- Markova, L.V.; Makarenko, V.M.; Semenyuk, M.S.; Zozulya, A.P.; Kong, H.; Han, H.G. Magnetoelastic viscometer for on-line monitoring of viscosity of lubricating oils. J. Frict. Wear 2011, 32, 41–48. [Google Scholar] [CrossRef]
- Chen, P.; Jiang, Q.S.; Horikawa, S.; Li, S.Q. Magnetoelastic-Sensor Integrated Microfluidic Chip for the Measurement of Blood Plasma Viscosity. J. Electrochem. Soc. 2017, 164, B247–B252. [Google Scholar] [CrossRef]
- Ruan, C.M.; Ong, K.G.; Mungle, C.; Paulose, M.; Nickl, N.J.; Grimes, C.A. A wireless pH sensor based on the use of salt-independent micro-scale polmer spheres. Sens. Actuators B Chem. 2003, 96, 61–69. [Google Scholar] [CrossRef]
- Ong, K.G.; Tan, E.L.; Grimes, C.A.; Shao, R. Removal of Temperature and Earth’s Field Effects of a Magnetoelastic pH Sensor. IEEE Sens. 2008, 8, 341–346. [Google Scholar] [CrossRef]
- Grimes, C.A.; Kouzoudis, D. Remote query measurement of pressure, fluid-flow velocity and humidity using magnetoelastic thick-film sensors. Sens. Actuators A Phys. 2000, 84, 205–212. [Google Scholar] [CrossRef]
- Grimes, C.A.; Kouzoudis, D.; Dickey, E.C.; Qian, D.; Anderson, M.A.; Shahidian, R.; Lindsey, M.; Green, L. Magnetoelastic sensors in combination with nanometer-scale honey combed thin film ceramic TiO2 for remote query measurement of humidity. J. Appl. Phys. 2000, 87, 5341–5343. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.K.; Schmidt, S.; Ong, K.G.; Mungle, C.; Grimes, C.A. Magnetoacoustic remote query temperature and humidity sensors. Smart Mater. Struct. 2000, 9, 502–510. [Google Scholar] [CrossRef]
- Jain, M.K.; Cai, Y.Q.; Grimes, C.A. A wireless micro-sensor for simultaneous measurement of pH, temperature and pressure. Smart Mater. Struct. 2001, 10, 347–353. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Cammers-Goodwin, A.; Grimes, C.A. A wireless remote query magnetoelastic CO2 sensor. J. Environ. Monit. 2000, 2, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Saiz, P.G.; Gandia, D.; Lasheras, A.; Sagasti, A.; Quintana, I.; Fdez-Gubieda, M.L.; Gutierrez, J.; Arriortua, M.I.; Lopes, A.C. Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems. Sens. Actuators B Chem. 2019, 296, 126612. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Yuesheng, C. Mass Load Distribution Dependence of Mass Sensitivity of Magnetoelastic Sensors under Different Resonance Modes. Sensors 2015, 15, 20267–20278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrami, L.V.R.; Kunst, S.R.; Birriel, E.J.; Malfatti, C.D. Magnetoelastic biosensors: Corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films 2017, 624, 83–94. [Google Scholar] [CrossRef]
- Guo, X.; Gao, S.; Sang, S.B.; Jian, A.Q.; Duan, Q.Q.; Ji, J.L.; Zhang, W.D. Detection system based on magnetoelastic sensor for classical swine fever virus. Biosens. Bioelectron. 2016, 82, 127–131. [Google Scholar] [CrossRef]
- Jiang, Q.S.; Chcn, P.; Li, S.Q.; Zhao, H.M.; Liu, Y.Z.; Horikawa, S.; Chin, B.A. A Highly Integratable Microfluidic Biosensing Chip Based on Magnetoelastic-Sensor and Planar Coil. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Li, S.; Chai, Y.; Chin, B.A. High Throughput Pathogen Screening for Food Safety Using Magnetoelastic Biosensors. In Sensing for Agriculture and Food Quality and Safety VII; Book Series Proceedings of SPIE; SPIE: Bellingham, WA, USA, 2015; Volume 9488, p. 94883. [Google Scholar]
- Yin, J.C.; Wang, Y.S.; Zhou, B.; Xiao, X.L.; Xue, J.H.; Wang, J.C.; Wang, Y.S.; Qian, Q.M. A wireless magnetoelastic sensor for uranyl using DNAzyme-graphene oxide and gold nanoparticles-based amplification. Sens. Actuators B Chem. 2013, 188, 147–155. [Google Scholar] [CrossRef]
- Gao, X.; Cai, Q. Kinetic Analysis of Glucose with Wireless Magnetoelastic Biosensor. Asian J. Chem. 2013, 25, 8681–8684. [Google Scholar] [CrossRef]
- Shen, W.; Mathison, L.C.; Petrenko, V.A.; Chin, B.A. Design and characterization of a magnetoelastic sensor for the detection of biological agents. J. Phys. D Appl. Phys. 2010, 43, 015004. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Jain, M.K.; Grimes, C.A. A wireless, remote query ammonia sensor. Sens. Actuators B Chem. 2000, 77, 614–619. [Google Scholar] [CrossRef]
- Possan, A.L.; Menti, C.; Beltrami, M.; Santos, A.D.; Roesch-Ely, M.; Missell, F.P. Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli. Mater. Sci. Eng. C 2016, 58, 541–547. [Google Scholar] [CrossRef]
- Beltrami, L.V.R.; Beltrami, M.; Roesch-Ely, M.; Kunst, S.R.; Missell, F.P.; Birriel, E.J.; Malfatti, C.F. Magnetoelastic sensors with hybrid films for bacteria detection in milk. J. Food Eng. 2017, 212, 18–28. [Google Scholar] [CrossRef]
- Ramasamy, M.; Porok, B.C. Resonance Behavior of Magnetostrictive Sensor in Biological Agent Detection. In Proceeding of the SEM Annual Conference, Vancouver, BC, Canada, 12–18 November 2010. [Google Scholar]
- Arruda, L.; Santos, C.M.; Orlandic, M.O.; Schreinerd, W.H.; Lisboa-Filho, P. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram. Int. 2015, 41, 2884–2891. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Chen, H.N.; Li, P.; Wang, D.Y.; Yang, Z.M. Humidity Sensing Properties of Metal Organic Framework-Derived Hollow Ball-Like TiO2 Coated QCM Sensor. IEEE Sens. J. 2019, 19, 2909–2915. [Google Scholar] [CrossRef]
- Gong, M.M.; Li, Y.S.; Guo, Y.A.; Lv, X.; Dou, X.C. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators B Chem. 2018, 262, 350–358. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Sun, Y.E.; Li, P.; Zhang, Y. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. ACS Appl. Mater. Interfaces 2016, 8, 14142–14149. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I.; Popa, K.; Catargiu, A.M. Electrical properties and humidity sensor characteristics of lead hydroxyapatite material. Appl. Surf. Sci. 2014, 303, 175–179. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I. Effects of Partial Replacement of Iron with Tungsten on Microstructure, Electrical, Magnetic and Humidity Properties of Copper-Zinc Ferrite Material. J. Electron. Mater. 2014, 43, 3522–3526. [Google Scholar] [CrossRef]
- Tudorache, F.; Tigau, N.; Condurache-Bota, S. Humidity sensing characteristics of Sb2O3 thin films with transitional electrical behavior. Sens. Actuators A Phys. 2019, 285, 134–141. [Google Scholar] [CrossRef]
- Krcmar, P.; Kuritka, I.; Maslik, J.; Urbanek, P.; Bazant, P.; Machovsky, M.; Suly, P.; Merka, P. Fully Inkjet-Printed CuO Sensor on Flexible Polymer Substrate for Alcohol Vapours and Humidity Sensing at Room Temperature. Sensors 2019, 19, 3068. [Google Scholar] [CrossRef] [Green Version]
- Ghadiry, M.; Gholami, M.; Kong, L.C.; Yi, C.W.; Ahmad, H.; Alias, Y. Nano-Anatase TiO2 for High Performance Optical Humidity Sensing on Chip. Sensors 2016, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Albishi, A.M.; Mirjahanmardi, S.H.; Ali, A.M.; Nayyeri, V.; Wasly, S.M.; Ramahi, O.M. Intelligent Sensing Using Multiple Sensors for Material Characterization. Sensors 2019, 19, 4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.L.; Li, Z.J.; Ma, J.Y.; Wang, L.; Yang, J.; Du, B.; Yu, Q.K.; Zu, X.T. Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol-gel SiO2 films: Investigations on the sensing property and mechanism. Sens. Actuators B Chem. 2015, 215, 283–291. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Zhu, S.B.; Dong, X.C.; Yao, Y.Y.; Guo, Y.F.; Gu, S.F.; Zhou, Z.W. A facile method to graphene oxide/polyaniline nanocomposite with sandwich-like structure for enhanced electrical properties of humidity detection. Anal. Chim. Acta 2019, 1080, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.; Rianjanu, A.; Hidayat, S.N.; Kusumaatmaja, A.; Roto, R.; Triyana, K. Quartz crystal microbalance coated with PEDOT PSS/PVA nanofiber for a high-performance humidity sensor. J. Sens. Sens. Syst. 2019, 8, 243–250. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.D.; Guo, H.H.; Wu, Z.Q. Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl. Surf. Sci. 2011, 257, 7778–7782. [Google Scholar] [CrossRef]
- Wang, X.F.; Ding, B.; Yu, J.Y.; Wang, M.R.; Pan, F.K. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 2010, 21, 055502. [Google Scholar] [CrossRef]
- Havare, A.K.; Ilgu, H.; Okur, S.; Sanli-Mohamed, G. Humidity Sensing Properties of Chitosan by Using Quartz Crystal Microbalance Method. Sens. Lett. 2012, 10, 906–910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.S.; Yu, K.; Shiki, O.Y.; Luo, L.Q.; Hu, H.M.; Zhang, Q.X.; Zhu, Z.Q. Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films. Physica B Condens. Matter 2005, 368, 94–99. [Google Scholar] [CrossRef]
- Su, P.G.; Sun, Y.L.; Lin, C.C. Novel low humidity sensor made of TiO2 nanowires/poly (2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance. Talanta 2006, 69, 946–951. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Wang, D.Y.; Zong, X.Q.; Dong, G.K.; Zhang, Y. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sens. Actuators B Chem. 2018, 262, 531–541. [Google Scholar] [CrossRef]
- Horzum, N.; Tascioglu, D.; Okur, S.; Demir, M.M. Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta 2011, 85, 1105–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Tai, H.L.; Bao, X.H.; Liu, C.H.; Ye, Z.B.; Jiang, Y.D. Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Mater. Lett. 2016, 174, 28–31. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.C.; Li, H.M.; Zhu, Y.H.; Xu, J.Q. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B Chem. 2014, 193, 320–325. [Google Scholar] [CrossRef]
- Gao, N.B.; Li, H.Y.; Zhang, W.H.; Zhang, Y.Z.; Zeng, Y.; Hu, Z.X.; Liu, J.Y.; Jiang, J.J.; Miao, L.; Yi, F.; et al. QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sens. Actuators B Chem. 2019, 293, 129–135. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atalay, S.; Izgi, T.; Kolat, V.S.; Erdemoglu, S.; Inan, O.O. Magnetoelastic Humidity Sensors with TiO2 Nanotube Sensing Layers. Sensors 2020, 20, 425. https://doi.org/10.3390/s20020425
Atalay S, Izgi T, Kolat VS, Erdemoglu S, Inan OO. Magnetoelastic Humidity Sensors with TiO2 Nanotube Sensing Layers. Sensors. 2020; 20(2):425. https://doi.org/10.3390/s20020425
Chicago/Turabian StyleAtalay, Selcuk, Tekin Izgi, Veli Serkan Kolat, Sema Erdemoglu, and Orhan Orcun Inan. 2020. "Magnetoelastic Humidity Sensors with TiO2 Nanotube Sensing Layers" Sensors 20, no. 2: 425. https://doi.org/10.3390/s20020425
APA StyleAtalay, S., Izgi, T., Kolat, V. S., Erdemoglu, S., & Inan, O. O. (2020). Magnetoelastic Humidity Sensors with TiO2 Nanotube Sensing Layers. Sensors, 20(2), 425. https://doi.org/10.3390/s20020425