Neutrons for Cultural Heritage—Techniques, Sensors, and Detection
Abstract
:1. Introduction
2. Neutron Methods—General Description
2.1. Neutron Imaging
2.2. Neutron Elastic Scattering
2.3. Neutron Spectroscopy
2.4. (n,Υ)-Based Techniques (Radiative-Capture Techniques)
3. Neutrons Applied to Cultural Heritage—Case Studies
3.1. “The Gates of Paradise” Studied by Neutron Techniques
3.2. Egyptian Grave Goods of Kha and Merit Studied by Neutron and Gamma Techniques
3.3. A Human Skeleton from the Roman Period Probed by Neutron Spectroscopy
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Creagh, D.; Bradley, D. Physical Techniques in the Study of Art, Archaeology and Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Scatigno, C.; Gaudenzi, S.; Sammartino, M.P.; Visco, G. A microclimate study on hypogea environments of ancient roman building. Sci. Total Environ. 2016, 566, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Merello, P.; García-Diego, F.J.; Beltrán, P.; Scatigno, C. High Frequency Data Acquisition System for Modelling the Impact of Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa di Diana (Ostia Antica, Italy) Case Study. Sensors 2018, 18, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scatigno, C.; Prieto-Taboada, N.; García-Florentino, C.; de Vallejuelo, S.F.O.; Maguregui, M.; Madariaga, J.M. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment. Environ. Sci. Pollut. Res. 2018, 25, 6285–6299. [Google Scholar] [CrossRef] [PubMed]
- Kockelmann, W.; Chapon, L.C.; Engels, R.; Schelten, J.; Neelmeijer, C.; Walcha, H.-M.; Artioli, G.; Shalev, S.; Perelli-Cippo, E.; Tardocchi, M.; et al. Neutrons in cultural heritage research. J. Neutron Res. 2006, 14, 37–42. [Google Scholar] [CrossRef]
- Kockelmann, W.; Kirfel, A. Neutron Diffraction Imaging of Cultural Heritage Objects. Archeometriai Műhely 2006, 2, 1–15. [Google Scholar]
- Cultural Heritage. Available online: https://www.ansto.gov.au/research/programs/other/cultural-heritage (accessed on 14 January 2020).
- Festa, G.; Kardjilov, N. Neutron Methods for Archaeology and Cultural Heritage; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Fernandez-Alonso, F.; Price, D. Neutron Scattering—Fundamentals. Exp. Methods Phys. Sci. 2013, 44, 2–545. [Google Scholar]
- Nuclear Techniques for Cultural Heritage Research; IAEA Radiation Technology Series No. 2; International Atomic Energy Agency: Vienna, Austria, 2001; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/p1501_web.pdf (accessed on 14 January 2020).
- Chadwick, J. The existence of a neutron. Proc. Roy. Soc. A 1932, 136, 692–708. [Google Scholar] [CrossRef]
- Carpenter, J.M.; Yelon, W.B. Neutron sources in neutron scattering. In Methods of Experimental Physics; Academic Press Inc.: London, UK, 1986; Volume 23. [Google Scholar]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Kardjilov, N.; Lehmann, E.; Strobl, M.; Woracek, R.; Manke, I. Neutron Imaging. In Neutron Methods for Archeology and Cultural Heritage; Festa, G., Kardjilov, N., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- De Beer, F.C. Neutron- and X-ray radiography/tomography: Non-destructive analytical tools for the characterization of nuclear materials. J. S. Afr. Inst. Min. Metall. 2015, 115, 913–924. [Google Scholar] [CrossRef]
- Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N.J.; Andreani, C. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer. Meas. Sci. Technol. 2017, 28, 095501. [Google Scholar] [CrossRef]
- Capelli, S.C.; Romanelli, G. An effective hydrogen scattering cross section for time-of-flight neutron experiments with simple organic molecules. J. Appl. Crystallogr. 2019, 52, 1233–1237. [Google Scholar] [CrossRef]
- Squires, G.L. Introduction to the Theory of Thermal Neutron Scattering; Dover Publication Inc.: New York, NY, USA, 1996. [Google Scholar]
- Nuclear Energy Agency. Available online: http://www.oecd-nea.org/janisweb/ (accessed on 14 January 2020).
- Pinna, R.; Zanetti, M.; Rudić, S.; Parker, S.; Armstrong, J.; Waller, S.; Zacek, D.; Smith, C.; Harrison, S.; Gorini, G.; et al. The TOSCA Spectrometer at ISIS: The Guide Upgrade and Beyond. J. Phys. Conf. Ser. 2018, 1021, 012029. [Google Scholar] [CrossRef]
- Cippo, E.P.; Croci, G.; Muraro, A.; Menelle, A.; Albani, G.; Cavenago, M.; Cazzaniga, C.; Claps, G.; Grosso, G.; Murtas, F.; et al. A GEM-based thermal neutron detector for high counting rate applications. J. Instrum. 2015, 10, P10003. [Google Scholar] [CrossRef]
- Finocchiaro, V.; Aliotta, F.; Tresoldi, D.; Ponterio, R.C.; Vasi, C.S.; Salvato, G. The autofocusing system of the IMAT neutron camera. Rev. Sci. Instrum. 2013, 84, 93701. [Google Scholar] [CrossRef] [PubMed]
- Brugger, R.M.; Taylor, A.D.; Olsen, C.E.; Goldstone, J.A.; Soper, A.K. A spectrometer for inelastic scattering using neutrons from 1 eV to 186 Ev. Nucl. Inst. Meth. Phys. Res. 1984, 221, 393–407. [Google Scholar] [CrossRef]
- Santisteban, J.; Edwards, L.; Fitzpatrick, M.; Steuwer, A.; Withers, P.; Daymond, M.; Johnson, M.; Rhodes, N.; Schooneveld, E. Strain imaging by Bragg edge neutron transmission. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 481, 765–768. [Google Scholar] [CrossRef]
- Minniti, T. Bragg Edge Analysis for Transmission Imaging Experiments software tool: BEATRIX. J. Appl. Crystallogr. 2019, 52, 903–909. [Google Scholar] [CrossRef]
- Grazzi, F.; Cantini, F.; Salvemini, F.; Scherillo, A.; Schillinger, B.; Kaestner, A.; Edge, D.; Williams, A. The investigation of Indian and central Asian swords through neutron methods. J. Archaeol. Sci. Rep. 2018, 20, 834–842. [Google Scholar] [CrossRef]
- Salvemini, F.; Grazzi, F.; Fedrigo, A.; Williams, A.; Civita, F.; Scherillo, A.; Vontobel, P.; Hartmann, S.; Lehmann, E.; Zoppi, M. Revealing the secrets of composite helmets of ancient Japanese tradition. Eur. Phys. J. Plus 2013, 128, 87. [Google Scholar] [CrossRef] [Green Version]
- Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A. Analysis of crystallographic structure of a Japanese sword by the pulsed neutron transmission method. Phys. Procedia 2013, 43, 360–364. [Google Scholar] [CrossRef]
- Schillinger, B.; Beaudet, A.; Fedrigo, A.; Grazzi, F.; Kullmer, O.; Laaß, M.; Makowska, M.; Werneburg, I.; Zanolli, C. Neutron Imaging in Cultural Heritage Research at the FRM II Reactor of the Heinz Maier-Leibnitz Center. J. Imaging 2018, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, G.; Minniti, T.; Skoro, G.; Krzystyniak, M.; Taylor, J.; Fornalski, D.; Fernandez-Alonso, F. Visualization of the Catalyzed Nuclear-Spin Conversion of Molecular Hydrogen Using Energy-Selective Neutron Imaging. J. Phys. Chem. C 2019, 123, 11745–11751. [Google Scholar] [CrossRef] [Green Version]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001. [Google Scholar]
- Festa, G.; Minniti, T.; Arcidiacono, L.; Borla, M.; Di Martino, D.; Facchetti, F.; Ferraris, E.; Turina, V.; Kockelmann, W.; Kelleher, J.; et al. Egyptian grave goods of Kha and Merit studied by neutron and gamma techniques. Angew. Chem. Int. Ed. 2018, 57, 7375–7379. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, R.; Artioli, G.; Kockelmann, W.; Kirfel, A.; Siano, S. The contribution of neutron scattering to Cultural Heritage research. Not. Neutroni E Luce Di Sincrotrone 2002, 7, 30–37. [Google Scholar]
- Artioli, G. Crystallographic texture analysis of archaeological metals: Interpretation of manufacturing techniques. Appl. Phys. A 2007, 89, 899–908. [Google Scholar] [CrossRef]
- Caporali, S.; Pratesi, G.; Kabra, S.; Grazzi, F. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements. Planet. Space Sci. 2018, 153, 72–78. [Google Scholar] [CrossRef]
- Power Diffraction File. International Centre for Diffraction Data. Available online: http://www.icdd.com/ (accessed on 14 January 2020).
- Inorganic Crystal Structure Database; Germany National Institute of Standard and Technology: Gaithersburg, MD, USA, 2004.
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250. [Google Scholar]
- Siano, S.; Kockelmann, W.; Bafile, U.; Celli, M.; Iozzo, M.; Miccio, M.; Moze, O.; Pini, R.; Salimbeni, R.; Zoppi, M. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction. Appl. Phys. A 2002, 74, s1139–s1142. [Google Scholar] [CrossRef]
- Kockelmann, W.; Kirfel, A.; Hähnel, E. Non-destructive Phase Analysis of Archaeological Ceramics using TOF Neutron Diffraction. J. Archaeol. Sci. 2001, 28, 213–222. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report; Los Alamos National Laboratory: Los Alamos, NM, USA, 1994; pp. 86–748.
- Ferrari, M.; Lutterotti, L. Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction. J. Appl. Phys. 1994, 76, 7246–7255. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr). Newsletter 2001, 26, 12–19. [Google Scholar]
- Stiner, M.C.; Kuhn, S.L.; Surovell, T.A.; Goldberg, P.; Meignen, L.; Weiner, S.; Bar-Yosef, O. Bone Preservation in Hayonim Cave (Israel): A Macroscopic and Mineralogical Study. J. Archaeol. Sci. 2001, 28, 643–659. [Google Scholar] [CrossRef] [Green Version]
- Marin-Arroyo, A.B.; Ruiz, M.L.; Bernabeu, G.V.; Román, R.S.; Morales, M.G.; Strauß, L. Archaeological implications of human-derived manganese coatings: A study of blackened bones in El Mirón Cave, Cantabrian Spain. J. Archaeol. Sci. 2008, 35, 801–813. [Google Scholar] [CrossRef]
- Snoeck, C.; Lee-Thorp, J.A.; Schulting, R.J. From Bone to Ash: Compositional and Structural Changes in Burned Modern and Archaeological Bone, Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 416, 55–68. [Google Scholar] [CrossRef]
- Mamede, A.M.P.; Gonçalves, D.; Marques, M.P.M.; Batista de Carvalho, L.A.E. Burned Bones Tell Their Own Stories: Methodological Approaches to Assess Heat-induced Diagenesis—A Review. Appl. Spec. Rev. 2018, 53, 603–635. [Google Scholar] [CrossRef]
- Marques, M.P.M.; Gonçalves, D.; Amarante, A.I.C.; Makhoul, C.I.; Parker, S.F.; De Carvalho, L.A.E.B. Osteometrics in burned human skeletal remains by neutron and optical vibrational spectroscopy. RSC Adv. 2016, 6, 68638–68641. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.P.M.; Mamede, A.P.; Vassalo, A.R.; Makhoul, C.; Cunha, E.; Gonçalves, D.; Parker, S.F.; Batista de Carvalho, L.A.E. Heat-induced Bone Diagenesis Probed by Vibrational Spectroscopy. Sci. Rep. 2018, 8, 15935. [Google Scholar] [CrossRef] [Green Version]
- Mamede, A.P.; Marques, M.P.M.; Vassalo, A.R.; Cunha, E.; Gonçalves, D.; Parker, S.F.; Kockelmann, W.; De Carvalho, L.A.E.B. Human bone probed by neutron diffraction: The burning process. RSC Adv. 2019, 9, 36640–36648. [Google Scholar] [CrossRef] [Green Version]
- Festa, G.; Caroppi, P.A.; Filabozzi, A.; Andreani, C.; Arancio, M.L.; Triolo, R.; Lo Celso, F.; Benfante, V.; Imberti, S. Composition and corrosion phases of Etruscan Bronzes from Villanovan Age. Meas. Sci. Technol. 2008, 19, 034004. [Google Scholar] [CrossRef] [Green Version]
- Loong, C.-K.; Scherillo, A.; Festa, G. Scattering Techniques: Small- and Wide-Angle Neutron Diffraction. In Neutron Methods for Archeology and Cultural Heritage; Festa, G., Kardjilov, N., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Baglioni, M.; Berti, D.; Teixeira, J.; Giorgi, R.; Baglioni, P. Nanostructured Surfactant-Based Systems for the Removal of Polymers from Wall Paintings: A Small-Angle Neutron Scattering Study. Langmuir 2012, 28, 15193–15202. [Google Scholar] [CrossRef]
- Coppola, R.; Lapp, A.; Magnani, M.; Valli, M. Small angle neutron scattering investigation of microporosity in marbles. Appl. Phys. A 2002, 74, s1066–s1068. [Google Scholar] [CrossRef]
- Mitchell, P.C.H.; Parker, S.F.; Ramirez-Cuesta, A.J.; Tomkinson, J. Vibrational Spectroscopy with Neutrons—With Applications in Chemistry, Biology, Materials Science and Catalysis; Series on Neutron Techniques and Applications; World Scientific: Singapore, 2005; Volume 3. [Google Scholar]
- Available online: https://www.isis.stfc.ac.uk (accessed on 29 November 2019).
- Festa, G.; Andreani, C.; Baldoni, M.; Cipollari, V.; Martínez-Labarga, C.; Martini, F.; Rickards, O.; Rolfo, L.; Sarti, M.F.; Volante, N.; et al. First Analysis of Ancient Burned Skeletal Human Remains Probed by Neutron and Optical Vibrational Spectroscopy. Sci. Adv. 2019, 5, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamede, A.P.; Vassalo, A.R.; Piga, G.; Cunha, E.; Parker, S.F.; Marques, M.P.M.; Batista de Carvalho, L.A.E.; Gonçalves, D. The Potential of Bioapatite Hydroxyls for Research on Archaeological Burned Bone. Anal. Chem. 2018, 90, 11556–11563. [Google Scholar] [CrossRef]
- Molnar, G.L. Handbook of Prompt Gamma Activation Analysis with Neutron Beam; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Fazekas, B.; Molnár, G.; Belgya, T.; Dabolczi, L.; Simonits, A. Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra. J. Radioanal. Nucl. Chem. 1997, 215, 271–277. [Google Scholar] [CrossRef]
- Belgya, T. Prompt Gamma Activation Analysis at the Budapest Research Reactor. Phys. Procedia 2012, 31, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Emeleus, V.M.; Simpson, G. Neutron Activation Analysis of Ancient Roman Potsherds. Nature 1960, 185, 196. [Google Scholar] [CrossRef]
- Postma, H.; Schillebeeckx, P. Non-destructive analysis of objects using neutron resonance capture. J. Radioanal. Nucl. Chem. 2005, 265, 297–302. [Google Scholar] [CrossRef]
- Postma, H.; Schillebeeckx, P.; Halbertsma, R.B. Neutron Resonance Capture analysis of Some Genuine and fake Etruscan Copper Alloy Statuettes. Archaeometry 2004, 46, 635–646. [Google Scholar] [CrossRef]
- Festa, G.; Arcidiacono, L.; Pappalardo, A.; Minniti, T.; Cazzaniga, C.; Scherillo, A.; Andreani, C.; Senesi, R. Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons. J. Instrum. 2016, 11, C03060. [Google Scholar] [CrossRef] [Green Version]
- Arcidiacono, L.; Parmentier, A.; Festa, G.; Martinon-Torres, M.; Andreani, C.; Senesi, R. Validation of a new data-analysis software for multiple-peak analysis of gamma spectra at ISIS pulsed Neutron and Muon Source. Nucl. Inst. Methods A 2019, 938, 51–55. [Google Scholar] [CrossRef]
- Arcidiacono, L.; Martinón-Torres, M.; Senesi, R.; Scherillo, A.; Andreani, C.; Festa, G. Cu-based alloys as a benchmark for T-PGAA quantitative analysis at ISIS pulsed neutron and muon source. JAAS 2019. [Google Scholar] [CrossRef]
- Ulpiani, P.; Romanelli, G.; Onorati, D.; Parmentier, A.; Festa, G.; Schooneveld, E.; Cazzaniga, C.; Arcidiacono, L.; Andreani, C.; Senesi, R. Optimization of detection strategies for epithermal neutron spectroscopy using photon-sensitive detectors. Rev. Sci. Instrum. 2019, 90, 073901. [Google Scholar] [CrossRef] [PubMed]
- Denker, A.; Laurenze-Landsberg, C.; Kleinert, K.; Schröder-Smeibidl, B. Paintings Reveal Their Secrets: Neutron Autoradiography Allows the Visualization of Hidden Layers. In Neutron Methods for Archeology and Cultural Heritage; Festa, G., Kardjilov, N., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Fiorentino, P.; Marabelli, M.; Matteini, M.; Moles, A. The condition of the ‘Doors of Paradise’ by L. Ghiberti. Tests and proposal cleaning. Stud. Conserv. 1982, 27, 145–153. [Google Scholar]
- Mello, E.; Parrini, P.; Matteini, M.; Moles, A.; Rocchi, G.; Bartolozzi, A.; Giorgi, L.; Giusgredi, G. Lorenzo Ghiberti: Storie di Giuseppe e di Beniamino, storie di Adamo ed Eva. Metodo Sci.—Oper. Ric. Nel RestauroSansoni Ed. 1982, 23, 176–178. [Google Scholar]
- Siano, S.; Salimbeni, R.; Pini, R.; Giusti, A.; Matteini, M. Laser cleaning methodology for the preservation of the Porta del Paradiso by Lorenzo Ghiberti. J. Cult. Herit. 2003, 4, 140–146. [Google Scholar] [CrossRef]
- Giusti, A.; Matteini, M. The Gilded Bronze Paradise Doors by Ghiberti in the Florence Baptistery; ICOMOS: Paris, France, 1997. [Google Scholar]
- Matteini, M.; Lalli, C.; Tosini, I.; Giusti, A.; Siano, S. Laser and chemical cleaning tests for the conservation of the Porta del Paradiso by Lorenzo Ghiberti. J. Cult. Herit. 2003, 4, 147–151. [Google Scholar] [CrossRef]
- Festa, G.; Andreani, C.; De Pascale, M.P.; Senesi, R.; Vitali, G.; Porcinai, S.; Giusti, A.M.; Schulze, R.; Canella, L.; Kudejova, P.; et al. Schillinger and the Ancient Charm Collaboration, A non-destructive stratigraphic and radiographic neutron study of Lorenzo Ghiberti’s reliefs from Paradise and North doors of Florence Baptistery. J. Appl. Phys. 2009, 106, 074909. [Google Scholar] [CrossRef] [Green Version]
- Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A.M.; Materna, T.; Paradowska, A.M. Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti’s relief from the Gates of Paradise. J. Appl. Phys. 2011, 109, 64908. [Google Scholar] [CrossRef] [Green Version]
- Schiaparelli, E. La tomba intatta dell’architettoKha nella ne-cropoli di Tebe; Edizioni AdArte: San Severo, Italy, 2007. [Google Scholar]
- Ancient and Modern Contexts of Egyptian Art. Available online: https://www.archeobooks.com/products/art-and-society-ancient-and-modern-contexts-of-egyptian-art (accessed on 16 January 2020).
- Andreani, C.; Aliotta, F.; Arcidiacono, L.; Borla, M.; Cippo, E.P.; Di Martino, D.; Facchetti, F.; Ferraris, E.; Festa, G.; Gorini, G.; et al. A neutron study of sealed ceramic vases from the grave-goods of Kha and Merit. JAAS 2017, 32, 1342–1347. [Google Scholar]
- Festa, G.; Christiansen, T.; Turina, V.; Borla, M.; Kelleher, J.; Arcidiacono, L.; Cartechini, L.; Ponterio, R.C.; Scatigno, C.; Senesi, R.; et al. Egyptian metallic inks on textiles from the 15th century BCE unraveled by light and neutron probes. Sci. Rep. 2019, 9, 7310. [Google Scholar] [CrossRef]
- Mays, S.; Fryer, R.; Pike, A.W.G.; Cooper, M.J.; Marshall, P. A multidisciplinary study of a burnt and mutilated assemblage of human remains from a deserted Mediaeval village in England. J. Archaeol. Sci. Rep. 2017, 16, 441–455. [Google Scholar] [CrossRef]
- Festa, G.; Andreani, C.; Baldoni, M.; Cipollari, V.; Martínez-Labarga, C.; Martini, F.; Rickards, O.; Rolfo, M.F.; Sarti, L.; Volante, N.; et al. Old Burned Bones Tell Us About Past Cultures. Spec. Eur. 2019, 31, 18–21. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Festa, G.; Romanelli, G.; Senesi, R.; Arcidiacono, L.; Scatigno, C.; Parker, S.F.; Marques, M.P.M.; Andreani, C. Neutrons for Cultural Heritage—Techniques, Sensors, and Detection. Sensors 2020, 20, 502. https://doi.org/10.3390/s20020502
Festa G, Romanelli G, Senesi R, Arcidiacono L, Scatigno C, Parker SF, Marques MPM, Andreani C. Neutrons for Cultural Heritage—Techniques, Sensors, and Detection. Sensors. 2020; 20(2):502. https://doi.org/10.3390/s20020502
Chicago/Turabian StyleFesta, Giulia, Giovanni Romanelli, Roberto Senesi, Laura Arcidiacono, Claudia Scatigno, Stewart F. Parker, M. P. M. Marques, and Carla Andreani. 2020. "Neutrons for Cultural Heritage—Techniques, Sensors, and Detection" Sensors 20, no. 2: 502. https://doi.org/10.3390/s20020502
APA StyleFesta, G., Romanelli, G., Senesi, R., Arcidiacono, L., Scatigno, C., Parker, S. F., Marques, M. P. M., & Andreani, C. (2020). Neutrons for Cultural Heritage—Techniques, Sensors, and Detection. Sensors, 20(2), 502. https://doi.org/10.3390/s20020502