Application of Wireless Accelerometer Mounted on Wheel Rim for Parked Car Monitoring
Abstract
:1. Introduction
1.1. Motivation of Project Undertaking
1.2. Modern Methods of Parked Car Protection
1.3. Accelerometers and Their Application in Car Monitoring
1.4. The Aim of the Work
2. Construction of a Sensing Device with the Head of Wireless Accelerometer Mounted on Wheel Rim
2.1. Head of Wireless Accelerometer
2.2. Receiver for the Wireless Accelerometer
3. Wireless Accelerometer Verification with Laboratory Equipment
4. Analysis of Wireless Accelerometer Working Conditions
4.1. Accelerator Signals Occurring in Normal Situations
4.2. Acceleration Signals Occurring at Unscrewing the Wheel Bolts
5. An Algorithm for Indication of Unscrewing of the Wheel Bolts
5.1. Algorithm Proposition
1 s = 97 (samples),
FOR (i = j-1 s; TO i = j) DO: maj = maj + |ni|,
maj = maj/1 s,
IF (maj < 5 + maj+1s) THEN: (sqj+1s = 1), ELSE: (sqj+1s = 0),
IF (sqj == 1 and sqj+1s == 0) THEN: h = 1, ELSE: h = 0,
5.2. Algorithm Verification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keith, P.; Hodges, B. Hydraulic Brake Fluids. In Hydraulic Fluids; Keith, P., Hodges, B., Eds.; Elsevier: Butterworth-Heinemann, UK, 1996; pp. 144–149. [Google Scholar] [CrossRef]
- Borecki, M.; Prus, P.; Korwin-Pawlowski, M.L. Capillary Sensor with Disposable Optrode for Diesel Fuel Quality Testing. Sensors 2019, 19, 1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopczyński, K.; Kubicki, J.; Młyńczak, J.; Mierczyk, J.; Hackiewicz, K. Stand-off detection of alcohol vapours in moving cars. Proc. SPIE 2016, 10159, 101590Z. [Google Scholar] [CrossRef]
- Massoz, Q.; Verly, J.G.; Van Droogenbroeck, M. Multi-Timescale Drowsiness Characterization Based on a Video of a Driver’s Face. Sensors 2018, 18, 2801. [Google Scholar] [CrossRef]
- Hu, J.; Huang, T.; Zhou, J.; Zeng, J. Electronic Systems Diagnosis Fault in Gasoline Engines Based on Multi-Information Fusion. Sensors 2018, 18, 2917. [Google Scholar] [CrossRef] [Green Version]
- Sualeh, M.; Kim, G.-W. Dynamic Multi-LiDAR Based Multiple Object Detection and Tracking. Sensors 2019, 19, 1474. [Google Scholar] [CrossRef] [Green Version]
- Wojtanowski, J.; Zygmunt, M.; Kaszczuk, M.; Mierczyk, Z.; Muzal, M. Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions. Opto-Electron. Rev. 2012, 22, 183–190. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Ji, X.; Ren, C.; Wu, J. Research on Lane a Compensation Method Based on Multi-Sensor Fusion. Sensors 2019, 19, 1584. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, F.; Ke, H.; Wang, L.L.; Xu, C.C. A Driver’s Physiology Sensor-Based Driving Risk Prediction Method for Lane-Changing Process Using Hidden Markov Model. Sensors 2019, 19, 2670. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Jung, Y.; Kim, D.-S.; Lee, S.; Jung, Y. Moving Object Detection Based on Optical Flow Estimation and a Gaussian Mixture Model for Advanced Driver Assistance Systems. Sensors 2019, 19, 3217. [Google Scholar] [CrossRef] [Green Version]
- Shopovska, I.; Jovanov, L.; Philips, W. Deep visible and thermal image fusion for enhanced pedestrian visibility. Sensors 2019, 19, 3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, A.; Block, S. Explaining Temporary and Permanent Motor Vehicle Theft Rates in the United States A Crime-Specific Approach. J. Res. Crime Delinq. 2013, 50, 445–471. [Google Scholar] [CrossRef]
- Van Dijk, J.M.; Mayhew, P.; Killias, M. Victimization rates—Vandalism to cars. In Experiences of Crime across the World—Key Findings from the 1989 International Crime Survey; Van Dijk, J.M., Ed.; Kluwer Law and Taxation Publishers: Denver, The Netherlands, 1990; pp. 19–20. [Google Scholar]
- Fumi, D.E.; Sultan, I.A. A novel in-vehicle real-time brake-monitoring system. Proc. IMechE Part D J. AuTomob. Eng. 2009, 223, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Heisler, H. Brake system. In Advanced Vehicle Technology, 2nd ed.; Heisler, H., Ed.; Elsevier: Butterworth-Heinemann, UK, 2002; pp. 450–509. [Google Scholar] [CrossRef]
- Day, A. Brake System Layout Design. In Braking of Road Vehicles; Day, A., Ed.; Elsevier: Butterworth-Heinemann, UK, 2014; pp. 149–213. [Google Scholar] [CrossRef]
- Swapnil, R.U.; Atul, B.T. Sensotronic Braking System. Int. J. Sci. Res. Dev. 2017, 5, 283–288. [Google Scholar]
- Reif, K. Brakes, Brake Control and Driver Assistance Systems Function, Regulation and Components; Springer: Wiesbaden, Germany, 2014; pp. 1–262. [Google Scholar] [CrossRef]
- Zahedi, E.; Gharaveisi, A.A. Fault detection and isolation of Anti-lock Braking System Sensors. In Proceedings of the 2nd International Conference on Control, Instrumentation and Automation, Shiraz, Iran, 27–29 December 2011; pp. 258–263. [Google Scholar] [CrossRef]
- Murphy, B.J.; Lebold, M.S.; Banks, J.C.; Reichard, K. Diagnostic End to End Monitoring & Fault Detection for Braking Systems. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Borecki, M.; Bebłowska, M.; Wrzosek, P. The proposition of reflectometric fibre optic load sensor. Proc. SPIE 2006, 6347, 63471P. [Google Scholar] [CrossRef]
- Kamath, A. How to implement wire-break detection and diagnostics in isolated digital inputs. Analog Des. J. 2018, 4Q, 1–4. [Google Scholar]
- Simonik, P.; Mrovec, T.; Przeczek, S.; Harach, T.; Klein, T. Brake by Wire for Remotely Controlled Vehicle. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Estepa, R.; Estepa, A.; Wideberg, J.; Jonasson, M.; Stensson-Trigell, A. More Effective Use of Urban Space by Autonomous Double Parking. J. Adv. Transp. 2017, 2017, 8426946. [Google Scholar] [CrossRef] [Green Version]
- Sodiq, M.; Hasbullah, H. Prototype of Arduino Based Parking Rotation System. IOP Conf. Ser. Mater. Sci. Eng. 2018, 384, 012013. [Google Scholar] [CrossRef]
- Bavya, R.; Mohanamurali, R. Next generation auto theft prevention and tracking system for land vehicles. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Shruthi, K.; Ramaprasad, P.; Ray, R.; Naik, M.A.; Pansari, S. Design of an anti-theft vehicle tracking system with a smartphone application. In Proceedings of the 2015 International Conference on Information Processing (ICIP), Pune, India, 16–19 December 2015; pp. 755–760. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Malekloo, A. Smart parking in IoT-enabled cities: A survey. Sustain. Cities Soc. 2019, 49, 101608. [Google Scholar] [CrossRef]
- Champa Bhagavathi, R.; Gowri, B.R.; Kasturi, R.; Pooja, C. Vehicle Theft Detection and Prevention Using GSM and GPS. IJIRCCE 2016, 4, 9177–9184. [Google Scholar] [CrossRef]
- Noh, J.H.; Jo, G.H.; Lim, W.D.; Lee, J.H.; Lee, S.Y.; Lee, S.J. Performance Analysis of GPS/BDS Integrated Precise Positioning System Considering Visibility of Satellites. Annu. Navig. 2019, 26, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Rizos, C.; Yang, L. Background and Recent Advances in the Locata Terrestrial Positioning and Timing Technology. Sensors 2019, 19, 1821. [Google Scholar] [CrossRef] [Green Version]
- Mejabi, O.V.; Abdulrahaman, M.D.; Adeshina, M.A.; Oyekunle, R.; Sadiku, J. Online System for Vehicle Ownership Tracking and Theft Alert with Community Participation. J. Adv. Multidiscip. Sci. Res. 2017, 3, 157–168. [Google Scholar]
- Martinez-Rico, J.R.; Martinez-Romo, J.; Araujo, L. Can deep learning techniques improve classification performance of vandalism detection in Wikipedia? Eng. Appl. Artif. Intell. 2019, 78, 248–259. [Google Scholar] [CrossRef]
- Pfattheicher, S.; Keller, J.; Knezevic, G. Destroying things for pleasure: On the relation of sadism and vandalism. Personal. Individ. Differ. 2019, 140, 52–56. [Google Scholar] [CrossRef]
- MacDonald, G.A. A review of low cost accelerometers for vehicle dynamics. Sens. Actuators A Phys. 1990, 21, 303–307. [Google Scholar] [CrossRef]
- Serttaş, T.N.; Gerek, Ö.N.; Hocaoğlu, F.O. Driver Classification Using K-Means Clustering of Within-Car Accelerometer Data. In Proceedings of the 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Martini, A.; Bonelli, G.P.; Rivola, A. Virtual Testing of Counterbalance Forklift Trucks: Implementation and Experimental Validation of a Numerical Multibody Model. Machines 2020, 8, 26. [Google Scholar] [CrossRef]
- Varanis, M.; Silva, A.; Mereles, A.; Pederiva, R. MEMS accelerometers for mechanical vibrations analysis: A comprehensive review with applications. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 527. [Google Scholar] [CrossRef]
- Mohammed, Z.; Elfadel, I.A.M.; Rasras, M. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers. Micromachines 2018, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Firek, P.; Szmidt, J.; Nowakowska-Langier, K.; Zdunek, K. Electric characterization and selective etching of aluminum oxide. Plasma Process. Polym. 2009, 6, S840–S843. [Google Scholar] [CrossRef]
- Yuan, C.; Lai, J.; Lyu, P.; Shi, P.; Zhao, W.; Huang, K. A Novel Fault-Tolerant Navigation and Positioning Method with Stereo-Camera/Micro Electro Mechanical Systems Inertial Measurement Unit (MEMS-IMU) in Hostile Environment. Micromachines 2018, 9, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- iNode.pl. Available online: https://inode.pl/iNode-Care-Sensor-1,p,11/s_lang/en (accessed on 8 September 2020).
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal Placement of Accelerometers for the Detection of Everyday Activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychlik, A.; Borecki, M.; Korwin-Pawlowski, M.L. Non-invasive method of car wheel rim examination. Proc. SPIE 2018, 10808, 108085S. [Google Scholar] [CrossRef]
- Borecki, M.; Prus, P.; Korwin-Pawlowski, M.; Rychlik, A.; Kozubel, W. Sensor set-up for wireless measurement of automotive rim and wheel parameters in laboratory conditions. Proc. SPIE 2017, 10445, 1044569. [Google Scholar] [CrossRef]
- Amirgaliyev, B.Y.; Kuatov, K.K.; Baibatyr, Z.Y. Road condition analysis using 3-axis accelerometer and GPS sensors. In Proceedings of the 10th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Szpakowski, A.; Pustelny, T. Parallel implementation of the concurrent algorithm for acoustic field distribution calculating in heterogeneous HPC environment. J. Phys. IV 2006, 137, 153–156. [Google Scholar] [CrossRef] [Green Version]
- STlife.augmented. LSM6DS3. Datasheet STlife. Augment. 2017, 026899, 1–102. Available online: https://www.st.com/resource/en/datasheet/lsm6ds3.pdf (accessed on 26 October 2020).
- Zhang, L.; Ning, Z.; Peng, H.; Mu, Z.; Sun, C. Effects of Vibration on the Electrical Performance of Lithium-Ion Cells Based on Mathematical Statistics. Appl. Sci. 2017, 7, 802. [Google Scholar] [CrossRef] [Green Version]
- 3M. 3M™ Chemical-Resistant Adhesive Transfer Tape 96105CR. 3M Electronics Device Bonding Technical Data, August 2017; pp. 1–2. Available online: https://multimedia.3m.com/mws/media/1428019O/3m-chemical-resistant-adhesive-transfer-tape-96105cr.pdf (accessed on 26 October 2020).
Car Number | Mechanic First Letter of Name | Mechanical Key Type | Place of Examination |
---|---|---|---|
S1 | A | X | parking place beside street |
S2 | W | L | laboratory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borecki, M.; Rychlik, A.; Olejnik, A.; Prus, P.; Szmidt, J.; Korwin-Pawlowski, M.L. Application of Wireless Accelerometer Mounted on Wheel Rim for Parked Car Monitoring. Sensors 2020, 20, 6088. https://doi.org/10.3390/s20216088
Borecki M, Rychlik A, Olejnik A, Prus P, Szmidt J, Korwin-Pawlowski ML. Application of Wireless Accelerometer Mounted on Wheel Rim for Parked Car Monitoring. Sensors. 2020; 20(21):6088. https://doi.org/10.3390/s20216088
Chicago/Turabian StyleBorecki, Michal, Arkadiusz Rychlik, Arkadiusz Olejnik, Przemysław Prus, Jan Szmidt, and Michael L. Korwin-Pawlowski. 2020. "Application of Wireless Accelerometer Mounted on Wheel Rim for Parked Car Monitoring" Sensors 20, no. 21: 6088. https://doi.org/10.3390/s20216088
APA StyleBorecki, M., Rychlik, A., Olejnik, A., Prus, P., Szmidt, J., & Korwin-Pawlowski, M. L. (2020). Application of Wireless Accelerometer Mounted on Wheel Rim for Parked Car Monitoring. Sensors, 20(21), 6088. https://doi.org/10.3390/s20216088