UAV Path Optimization for Precision Agriculture Wireless Sensor Networks
Abstract
:1. Introduction
2. System Model
2.1. System Elements
2.2. Path Planning
3. Proposed Strategy
3.1. Timeslots as Time Base
3.2. Prohibition List
3.3. UAV Flight Strategy
4. Simulation Methodology
- Number of UAVs needed to reconfigure all SNs;
- Flight distance of each UAV;
- Flight time of each UAV;
- Total flight time;
- Number of hops by each UAV;
- Number of decisions taken by each UAV;
- UAVs pre-calculated path length;
- Timeslots assigned to the scenario;
- Timeslots elapsed until all SNs are reconfigured;
- UAV coordinates as a function of flight time/TS;
- SNs states as a function of time/TS;
- UAVs connections with each SN as a function of time/TS;
- SNs missed flights by UAV;
- SNs Active Time (before and after reconfiguration);
- Battery percentage and UAV autonomy as a function of time/TS.
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Lazarova-Molnar, S. Middleware requirements for collaborative unmanned aerial vehicles. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 1051–1060. [Google Scholar]
- Klaine, P.; Nadas, J.; Souza, R.; Imran, M. Distributed Drone Base Station Positioning for Emergency Cellular Networks Using Reinforcement Learning. Cogn. Comput. 2018, 10, 790–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos, G.; Deruyck, M.; Martens, L.; Joseph, W. Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks. Sensors 2019, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayor, V.; Estepa, R.; Estepa, A.; Madinabeitia, G. Energy-Efficient UAVs Deployment for QoS-Guaranteed VoWiFi Service. Sensors 2020, 20, 4455. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.N.D.; Rodin, C.D.; Johansen, T.A.; Storvold, R. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control. Sensors 2019, 19, 4067. [Google Scholar]
- Lee, J.Y.; Chung, A.Y.; Shim, H.; Joe, C.; Park, S.; Kim, H. UAV Flight and Landing Guidance System for Emergency Situations. Sensors 2019, 19, 4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüley, J.; Osuský, F. Unmanned Radiation Monitoring System. IEEE Trans. Nucl. Sci. 2020, 67, 636–643. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, P.; Wang, J.; Wang, G.; Meng, F. Traffic Patrolling Routing Problem with Drones in an Urban Road System. Sensors 2019, 19, 5164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hireche, C.; Dezan, C.; Mocanu, S.; Heller, D.; Diguet, J.P. Context/Resource-Aware Mission Planning Based on BNs and Concurrent MDPs for Autonomous UAVs. Sensors 2018, 18, 4266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yao, H.; Wang, J. Multi-UAV Enabled Load-Balance Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2020, 7, 6898–6908. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The World Bank. World’s Population Will Continue to Grow and Will Reach Nearly 10 Billion By 2050. 2020. Available online: https://blogs.worldbank.org/opendata/worlds-population-will-continue-grow-and-will-reach-nearly-10-billion-2050 (accessed on 19 July 2020).
- Maksimović, M.; Omanović-Mikličanin, E.; Badnjević, A. Nanofood and Internet of Nano Things; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Yallappa, D.; Veerangouda, M.; Maski, D.; Palled, V.; Bheemanna, M. Development and Evaluation of Drone Mounted Sprayer for Pesticide Applications to Crops. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 8–11 October 2015. [Google Scholar]
- Rao, V.S.; Gorantla, S.R. Design and Modelling of an Affordable UAV Based Pesticide Sprayer in Agriculture Applications. In Proceedings of the 2019 Fifth International Conference on Electrical Energy Systems (ICEES), Chennai, India, 21–22 February 2019; Volume 360, pp. 1–4. [Google Scholar]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Drone Pode Trazer Economia de Insumos No Campo e Aumento da Produtividade. 2020. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/2448225/drone-pode-trazer-economia-de-insumos-no-campo-e-aumento-da-produtividade (accessed on 19 July 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Produto Interno Bruto—PIB. 2020. Available online: https://www.ibge.gov.br/explica/pib.php (accessed on 19 July 2020).
- Kashuba, S.; Novikov, V.; Lysenko, O.; Alekseeva, I. Optimization of UAV path for wireless sensor network data gathering. In Proceedings of the 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kiev, Ukraine, 13–15 October 2015; pp. 280–283. [Google Scholar]
- Trotta, A.; Felice, M.D.; Bononi, L.; Natalizio, E.; Perilli, L.; Scarselli, E.F.; Cinotti, T.S.; Canegallo, R. BEE-DRONES: Energy-efficient Data Collection on Wake-Up Radio-based Wireless Sensor Networks. In Proceedings of the IEEE Infocom 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 547–553. [Google Scholar]
- Xiong, R.; Shan, F. Dronetank: Planning UAVs’ flights and sensors’ data transmission under energy constraints. Sensors 2018, 18, 2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, C.; Zeng, Y.; Zhang, R. Energy-Efficient Data Collection in UAV Enabled Wireless Sensor Network. IEEE Wirel. Commun. Lett. 2018, 7, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, B.; Endler, M. A Distributed Algorithm for Aerial Data Collection from Wireless Sensors Networks by UAVs. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 129–136. [Google Scholar]
- Zeng, Y.; Zhang, R. Energy-Efficient UAV Communication with Trajectory Optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.; Heo, J.; Jung, J.; Kim, B.; Min, H. A rendezvous point estimation considering drone speed and data collection delay. In Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, Kuta Bali, Indonesia, 8–10 August 2017; pp. 1–4. [Google Scholar]
- Ryan, A.; Tisdale, J.; Godwin, M.; Coatta, D.; Nguyen, D.; Spry, S.; Sengupta, R.; Hedrick, J.K. Decentralized Control of Unmanned Aerial Vehicle Collaborative Sensing Missions. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 4672–4677. [Google Scholar]
- Yang, J.; Wang, X.; Li, Z.; Yang, P.; Luo, X.; Zhang, K.; Zhang, S.; Chen, L. Path planning of unmanned aerial vehicles for farmland information monitoring based on WSN. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 2834–2838. [Google Scholar]
- Alemayehu, T.S.; Kim, J.H. Efficient Nearest Neighbor Heuristic TSP Algorithms for Reducing Data Acquisition Latency of UAV Relay WSN. Wirel. Pers. Commun. 2017, 95, 3271–3285. [Google Scholar] [CrossRef]
- Ostermann, A.; Wanner, G. Geometry by Its History; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yue, W.; Jiang, Z. ScienceDirect ScienceDirect Path Planning for UAV to Collect Sensors Data Based on Spiral Path Planning for UAV to Collect Sensors Data Based on Spiral Decomposition Decomposition. Procedia Comput. Sci. 2018, 131, 873–879. [Google Scholar] [CrossRef]
- Giammarini, M.; Pieralisi, M.; Isidori, D.; Concettoni, E.; Cristalli, C.; Fioravanti, M. Real-time synchronization of wireless sensor network by 1-PPS signal. In Proceedings of the SPIE Microtechnologies 2015, Barcelona, Spain, 4–6 May 2015. [Google Scholar]
- Koo, K.Y.; Hester, D.; Kim, S. Time synchronization for wireless sensors using low-cost gps module and arduino. Front. Built Environ. 2019, 4, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Shin, J.; Kim, C. Deterministic rendezvous scheme in multichannel access networks. Electron. Lett. 2010, 46, 1402–1404. [Google Scholar] [CrossRef]
- DJI—Return to Home Discussion Forum. DJI—Return to Home. 2020. Available online: https://forum.dji.com/thread-150968-1-1.html (accessed on 19 July 2020).
- NS3—The Netowrk Simulator. 2020. Available online: https://www.nsnam.org/about/what-is-ns-3 (accessed on 19 July 2020).
- MathWorks. 2020. Available online: https://www.mathworks.com/products/matlab.html (accessed on 19 July 2020).
- The One—The Opportunistic Network Environment Simulator. 2020. Available online: https://akeranen.github.io/the-one/ (accessed on 19 July 2020).
- OMNET++. 2020. Available online: https://omnetpp.org/intro/ (accessed on 19 July 2020).
- Anand, H.; Chen, Z.; Das, J. The OpenUAV Swarm Simulation Testbed: A Collaborative Design Studio for Field Robotics. 2020. Available online: https://openuav.us/wiki/index.php/OpenUAV/_Project_overview (accessed on 19 July 2020).
- Dronecode Project. A Linux Foundation Collaborative Project. 2020. Available online: https://www.dronecode.org/ (accessed on 19 July 2020).
- UAV Simulator. 2020. Available online: https://github.com/gilsonjustjr/UAV-Simulator/ (accessed on 19 July 2020).
- DJI—Drones Manufacturer. 2020. Available online: https://www.dji.com/br/company?site=brandsite&from=footer (accessed on 19 July 2020).
- Maxa, J.A.; Mahmoud, M.S.B.; Larrieu, N.; Maxa, J.A.; Mahmoud, M.S.B.; Larrieu, N.; Routing, U.; Maxa, J.A.; Slim, M.; Mahmoud, B.; et al. Survey on UAANET Routing Protocols and Network Security Challenges. Hoc Sens. Wirel. Netw. 2017. [Google Scholar]
- Wang, C.; Ma, F.; Yan, J.; De, D.; Das, S.K. Efficient Aerial Data Collection with UAV in Large-Scale Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2015, 11, 286080. [Google Scholar] [CrossRef] [Green Version]
- Shirani, R.; St-hilaire, M.; Kunz, T.; Zhou, Y.; Li, J.; Lamont, L. Combined Reactive-Geographic Routing for Unmanned Aeronautical Ad-hoc Networks. In Proceedings of the 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 27–31 August 2012; pp. 820–826. [Google Scholar]
Global Parameters | |||||
---|---|---|---|---|---|
Path Planning Algorithm | DDNN | ||||
Number of sensor nodes (SNs) | 5, 10, 15 and 20 | ||||
SN Communication Range | 100 m | ||||
Simulation Area | 1200 m × 500 m | ||||
Number of Timeslots (TS) | TS ≥ 10 | ||||
UAV Flight Autonomy | 600 s | ||||
Reading Time () | 3 s | ||||
Variable Parameters | |||||
UAV Average Speed (m/s) | 25 | 25 | Wait | 25 | 25 |
Shared or Dedicated Timeslots | Dedicated | Shared | Dedicated | Dedicated | Dedicated |
SN Active Time (timeslots) | 2 | 2 | 2 | 2 | 1 |
Prohibition List | Active | Active | Active | Inactive | Active |
Method | Observations | |
---|---|---|
Proposed work | Pre-programming of each SN timeslot and UAV sends rendezvous messages to ensure SNs timeslots sync. | We assumed that each SN is in a random timeslot, and the UAV is used as a sink node to collect data and to reconfigure it accordingly its own route; Our target is the dynamics of reconfiguration process (decisions, restriction list and flight length/time) |
Trotta et al. (BEE-Drones) [20] | UAV uses a wake-up transmitter and installed a wake up receiver in SNs; Authors displaced wireless charging stations over the area to charge UAVs. | Results based on number of readings and quality of collected data; Clusters the SNs into different groups to each UAV; After that applies path planning. |
Xiong et al. (DroneTank) [21] | Assume timeslots are assigned to each SN Uses an algorithm called Watertank to manage SNs active timeslots ensuring synchronization with UAV path. Watertank ensures the closest SN from UAV will be able to transmit its data, reducing energy budget. | Only natural landscapes (river, power transmission lines, ...); Do no explain how timeslots are assigned to SNs; Takes curves into consideration and UAVs energy budget for that; Results are based on data collection in function of network size, average energy from SN, wireless tx range; Focus on energy budget from UAV and SN, and data delivery |
Zhan et al. [22] | Downlink to wake up SNs Considers only four SNs. Based on individual timeslots, and there is always one SN active per timeslot. | They consider that at least one SN is awake every timeslot to communicate with UAV; There is a downlink control to communicate with SN that wake them up while UAV flies over them; Considers few SNs, only 4. Conclusions based on wake-up time, consumption and rate |
UAV’s Battery Consumption | Decisions | Flight Distance (km) | Flight Time (min) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | |
0.39 | 0.76 | 1.23 | 1.80 | 0.71 | 2.32 | 5.43 | 7.77 | 6.27 | 12.12 | 18.29 | 26.79 | 3.89 | 7.62 | 12.31 | 17.96 | |
0.54 | 1.64 | 2.85 | 3.83 | 0.64 | 3.25 | 7.30 | 10.38 | 6.76 | 13.80 | 23.36 | 35.47 | 5.45 | 16.36 | 28.50 | 38.31 | |
0.54 | 1.64 | 3.79 | 8.29 | 0.00 | 0.00 | 0.00 | 0.00 | 1.81 | 4.06 | 7.13 | 12.70 | 5.45 | 16.36 | 37.91 | 82.91 | |
0.77 | 1.71 | 2.04 | 4.62 | 0.00 | 0.00 | 0.00 | 0.00 | 8.02 | 16.10 | 20.65 | 32.18 | 7.65 | 17.11 | 20.44 | 46.16 | |
1.19 | 3.07 | 6.54 | 10.40 | 5.52 | 12.16 | 18.83 | 30.71 | 10.98 | 21.07 | 31.14 | 50.74 | 11.91 | 30.74 | 65.42 | 103.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Just, G.E., Jr.; E. Pellenz, M.; Lima, L.A.d.P., Jr.; S. Chang, B.; Demo Souza, R.; Montejo-Sánchez, S. UAV Path Optimization for Precision Agriculture Wireless Sensor Networks. Sensors 2020, 20, 6098. https://doi.org/10.3390/s20216098
Just GE Jr., E. Pellenz M, Lima LAdP Jr., S. Chang B, Demo Souza R, Montejo-Sánchez S. UAV Path Optimization for Precision Agriculture Wireless Sensor Networks. Sensors. 2020; 20(21):6098. https://doi.org/10.3390/s20216098
Chicago/Turabian StyleJust, Gilson E., Jr., Marcelo E. Pellenz, Luiz A. de Paula Lima, Jr., Bruno S. Chang, Richard Demo Souza, and Samuel Montejo-Sánchez. 2020. "UAV Path Optimization for Precision Agriculture Wireless Sensor Networks" Sensors 20, no. 21: 6098. https://doi.org/10.3390/s20216098
APA StyleJust, G. E., Jr., E. Pellenz, M., Lima, L. A. d. P., Jr., S. Chang, B., Demo Souza, R., & Montejo-Sánchez, S. (2020). UAV Path Optimization for Precision Agriculture Wireless Sensor Networks. Sensors, 20(21), 6098. https://doi.org/10.3390/s20216098