treNch: Ultra-Low Power Wireless Communication Protocol for IoT and Energy Harvesting
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
- Power management algorithm sensing the energy status (cross-layer).
- Control in the nodes, responsibility in the gateway, complexity in the client.
- Asynchronous transmissions, synchronous (subsequent) and optional receptions.
- Low frame overhead (including optimized security).
- Randomized and controlled medium access (without sensing).
- No physical-layer definition: adaptive to conditions.
- Dynamic nodes emitting power.
2. “treNch”
2.1. Network and Roles
- Node: Usually a sensor running under ULP conditions.
- Gateway (GW): Always ready to receive the node messages and answer them if pertinent. With network/link-layer functionalities, but transparent at application level. It defines a sub-network. No power limitations.
- Client (back-/frontend): Server and data consumer and in direct communication with the gateways. Interprets/triggers the application services, but with no network/link-layer functionalities. It approves new nodes registrations. No power limitations.
2.2. Protocol Stack
2.3. Frame Format
- RX-Cycle. It indicates after how many operation cycles the node will perform a reception. 0 forces the gateway to answer or, sent by the gateway, asks the node to receive again.
- Reset. It signals that the node is coming from a brown out reset (1), giving valuable information about its energy conditions.
- ACK. It acknowledges the last node reception.
- RSSI. It gives instructions to the node about the required emitting power, adapting it according the needs.
2.4. Workflow
2.4.1. Registering
2.4.2. Acknowledgments
2.4.3. Node-to-Node Transmission/Channel Subscription
2.5. Power Management Algorithm and Energy Flag
2.6. Security
- Level 0: no security. Packets are neither encrypted nor authenticated. For evaluation purposes. Not recommended for productive environments.
- Level 1: authentication. All packets are authenticated. For scenarios in which the exchanged data can be left public.
- Level 2: encryption and authentication. All packets are authenticated and encrypted.
- Level 3: encryption and authentication with extended Message Integrity Check (MIC).
2.6.1. Secure Device Provisioning
2.6.2. Separation of Concerns
2.6.3. Replay Attack Protection
2.7. Other Features
2.7.1. Reliability
2.7.2. Latency
2.7.3. Medium Access Control
2.7.4. Emitting Power
2.7.5. Hardware
3. Comparison with BLE
3.1. Power Consumption Analysis
3.1.1. Transmitter
3.1.2. With Reception
3.1.3. Critical Energy
3.1.4. Distance
3.1.5. Large Payload
3.2. Other Aspects
3.2.1. Error Handling
3.2.2. Latency
3.2.3. Reliability
3.2.4. Topology
3.2.5. Interoperability
3.2.6. Security
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jayakumar, H.; Lee, K.; Lee, W.S.; Raha, A.; Kim, Y.; Raghunathan, V. Powering the internet of things. In Proceedings of the 2014 International Symposium on Low Power Electronics and Design, La Jolla, CA, USA, 11–13 August 2014; pp. 375–380. [Google Scholar]
- Zhou, G.; Huang, L.; Li, W.; Zhu, Z. Harvesting ambient environmental energy for wireless sensor networks: A survey. J. Sens. 2014, 2014, 815467. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Cruz, F.; Escobar-Molero, A.; Castillo, E.; Becherer, M.; Rivadeneyra, A.; Morales, D.P. Why Use RF Energy Harvesting in Smart Grids. In Proceedings of the 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018; pp. 1–6. [Google Scholar]
- Liu, X.; Sánchez-Sinencio, E. A highly efficient ultralow photovoltaic power harvesting system with MPPT for internet of things smart nodes. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2015, 23, 3065–3075. [Google Scholar] [CrossRef]
- Moreno-Cruz, F.; Toral-López, V.; Cuevas, M.R.; Salmerón, J.F.; Rivadeneyra, A.; Morales, D.P. Dual-Band Store-and-Use System for RF Energy Harvesting with Off-the-Shelf DC/DC Converters. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Sandhu, M.M.; Geissdoerfer, K.; Khalifa, S.; Jurdak, R.; Portmann, M.; Kusy, B. Towards Optimal Kinetic Energy Harvesting for the Batteryless IoT. arXiv 2020, arXiv:2002.08887. [Google Scholar]
- Deng, F.; Yue, X.; Fan, X.; Guan, S.; Xu, Y.; Chen, J. Multisource energy harvesting system for a wireless sensor network node in the field environment. IEEE Internet Things J. 2018, 6, 918–927. [Google Scholar] [CrossRef]
- Nikoukar, A.; Raza, S.; Poole, A.; Güneş, M.; Dezfouli, B. Low-power wireless for the Internet of Things: Standards and applications. IEEE Access 2018, 6, 67893–67926. [Google Scholar] [CrossRef]
- Zikria, Y.B.; Kim, S.W.; Hahm, O.; Afzal, M.K.; Aalsalem, M.Y. Internet of Things (IoT) operating systems management: Opportunities, challenges, and solution. Sensors 2019, 19, 1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zikria, Y.B.; Yu, H.; Afzal, M.K.; Rehmani, M.H.; Hahm, O. Internet of things (IoT): Operating system, applications and protocols design, and validation techniques. Future Gener. Comput. Syst. 2018, 88, 699–706. [Google Scholar] [CrossRef]
- Freschi, V.; Lattanzi, E. A Study on the Impact of Packet Length on Communication in Low Power Wireless Sensor Networks Under Interference. IEEE Internet Things J. 2019, 6, 3820–3830. [Google Scholar] [CrossRef]
- Aripriharta, A.; Firmansah, A.; Yazid, M.; Wahyono, I.; Horng, G. Modelling of adaptive power management circuit with feedback for self-powered IoT. J. Phys. Conf. Ser. Iop Publ. 2020, 1595, 012023. [Google Scholar] [CrossRef]
- Amirinasab, M.; Shamshirband, S.; Chronopoulos, A.T.; Mosavi, A.; Nabipour, N. Energy-efficient method for wireless sensor networks low-power radio operation in internet of things. Electronics 2020, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Al-Turjman, F.; Abujubbeh, M. IoT-enabled smart grid via SM: An overview. Future Gener. Comput. Syst. 2019, 96, 579–590. [Google Scholar] [CrossRef]
- Figueroa Lorenzo, S.; Añorga Benito, J.; García Cardarelli, P.; Alberdi Garaia, J.; Arrizabalaga Juaristi, S. A comprehensive review of RFID and bluetooth security: Practical analysis. Technologies 2019, 7, 15. [Google Scholar]
- Álvarez, F.; Almon, L.; Hahn, A.S.; Hollick, M. Toxic Friends in Your Network: Breaking the Bluetooth Mesh Friendship Concept. In Proceedings of the 5th ACM Workshop on Security Standardisation Research Workshop, London, UK, 11 November 2019; pp. 1–12. [Google Scholar]
- Ghori, M.R.; Wan, T.C.; Anbar, M.; Sodhy, G.C.; Rizwan, A. Review on Security in Bluetooth Low Energy Mesh Network in Correlation with Wireless Mesh Network Security. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Perak, Malaysia, 15–17 October 2019; pp. 219–224. [Google Scholar]
- Feng, X.; Yan, F.; Liu, X. Study of wireless communication technologies on Internet of Things for precision agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar] [CrossRef]
- Mahmoud, S.M.; Mohamad, A.A.H. A study of efficient power consumption wireless communication techniques/modules for internet of things (IoT) applications. Adv. Internet Things 2016. [Google Scholar] [CrossRef] [Green Version]
- Unwala, I.; Lu, J. IoT protocols: Z-Wave and Thread. Int. J. Future Rev. Comput. Sci. Commun. Eng. (IJFRSCE) 2017, 3, 355–359. [Google Scholar]
- ANT Web Site. Available online: https://www.thisisant.com (accessed on 26 August 2020).
- Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4. [Google Scholar]
- Thread Group Web Site. Available online: https://www.threadgroup.org (accessed on 26 August 2020).
- enOcean Alliance Web Site. Available online: https://www.enocean-alliance.org (accessed on 27 August 2020).
- Sharma, H.; Sharma, S. A review of sensor networks: Technologies and applications. In Proceedings of the 2014 Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, 6–8 March 2014; pp. 1–4. [Google Scholar]
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. Lorawan Specification; LoRa Alliance: San Ramon, CA, USA, 2015. [Google Scholar]
- San Cheong, P.; Bergs, J.; Hawinkel, C.; Famaey, J. Comparison of LoRaWAN classes and their power consumption. In Proceedings of the 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), Leuven, Belgium, 14 November 2017; pp. 1–6. [Google Scholar]
- Bäumker, E.; Garcia, A.M.; Woias, P. Minimizing power consumption of LoRa® and LoRaWAN for low-power wireless sensor nodes. J. Phys. Conf. Ser. Iop Publ. 2019, 1407, 012092. [Google Scholar] [CrossRef]
- Collotta, M.; Ferrero, R.; Rebaudengo, M. A Fuzzy Approach for Reducing Power Consumption in Wireless Sensor Networks: A Testbed with IEEE 802.15. 4 and WirelessHART. IEEE Access 2019, 7, 64866–64877. [Google Scholar] [CrossRef]
- Detterer, P.; Erdin, C.; Huisken, J.; Jiao, H.; Nabi, M.; Basten, T.; De Gyvez, J.P. Trading sensitivity for power in an IEEE 802.15. 4 conformant adequate demodulator. In In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 1674–1679. [Google Scholar]
- Zhang, Y.; Weng, J.; Dey, R.; Jin, Y.; Lin, Z.; Fu, X. On the (In) security of Bluetooth Low Energy One-Way Secure Connections Only Mode. arXiv 2019, arXiv:1908.10497. [Google Scholar]
- Coman, F.L.; Malarski, K.M.; Petersen, M.N.; Ruepp, S. Security issues in internet of things: Vulnerability analysis of LoRaWAN, sigfox and NB-IoT. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Mao, B.; Kawamoto, Y.; Liu, J.; Kato, N. Harvesting and threat aware security configuration strategy for IEEE 802.15. 4 based IoT networks. IEEE Commun. Lett. 2019, 23, 2130–2134. [Google Scholar] [CrossRef]
- Meka, S.; Fonseca, B. Improving route selections in ZigBee wireless sensor networks. Sensors 2020, 20, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomfin, R.; Chafii, M.; Fettweis, G. A Novel Modulation for IoT: PSK-LoRa. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- FIPS. 113 Computer Data Authentication; National Institute of Standards and Technology, Federal Information Processing Standards: Gaithersburg, MD, USA, 1985; p. 29. [Google Scholar]
- Whiting, D.; Housley, R.; Ferguson, N. Counter with cbc-mac (ccm). In Internet Engineering Task Force Report; IETF: Fremont, CA, USA, 2003. [Google Scholar]
- Liu, X.; Goldsmith, A. Wireless medium access control in networked control systems. In Proceedings of the 2004 American Control Conference, Melbourne, Victoria, Australia, 20–23 July 2004; Volume 4, pp. 3605–3610. [Google Scholar]
- Nordic Semiconductor. nRF52 DK for Bluetooth LE, Bluetooth Mesh, ANT and 2.4 GHz Applications. nRF52 Product Brief; Nordic Semiconductor: Trondheim, Norway, 2019. [Google Scholar]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance evaluation of bluetooth low energy: A systematic review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef] [Green Version]
Power Consumption | Range | Topology | Data Rate | Standard | Power Management Techniques | |
---|---|---|---|---|---|---|
BLE [14,18,19] | Ultra-low 10 s of µW | WPAN 100 m | Star, Bus, Mesh | 1 and 2 Mbps | Bluetooth SIG | Phy.-layer (FSK-based mod.) Periph. skip connections Mesh: Friendship, flooding |
Wi-Fi [14,18] | Low power 10 s of mW | WLAN 250 m | Star, Mesh | 11–300 Mbps | IEEE 802.11 | - |
Zigbee [14,18,19] | Ultra-low ∼50 µW | WPAN 100 m | Star, Mesh, Cluster | 20, 40, 250 kbps | IEEE 802.15.4 | Phy.-layer (O-QPSK mod., DSSS) Parent relationships Beacon-enabled/CSMA/CA |
Z-Wave [14,20] | Low power ∼ µW | WPAN 30 m | Mesh, Star | 40 kbps | Proprietary | Low data rate Phy.-layer (FSK mod., sub-GHz) Asynch. TX, Synch. RX |
ANT [21,22] | Ultra-low ∼80 µW | WPAN 30 m | Star, Bus, Mesh | 60 kbps | Proprietary | Phy.-layer (FSK-based mod.) Isochro. + Medium-sensing |
Thread [20,23] | Ultra-low ∼50 µW | WPAN 100 m | Mesh, Star | 250 kbps | IEEE 802.15.4 | Phy.-layer (O-QPSK mod., DSSS) Asynchronous CSMA/CA |
EnOcean [24,25] | Ultra-low µW | WPAN 30 m | Star | 125 kbps | Proprietary | Phy.-layer (ASK/FSK mod., sub-GHz) Low overhead Asynch. TX, Smart ACK |
LoRaWAN [26,27,28] | Low power 100 s of µW | WWAN 10 kM | Star | 0.3–50 kbps | Proprietary | Phy.-layer (LoRa mod., sub-GHz) Low data rate Asynch. TX, Subsequent RX |
PREAMB. | ORIGIN ID (SYNC) | LENGTH | PROT. VER. | PAYLOAD | CTR/NODE | CRC | ||||||
PARAM | PARAM 2 | … | ||||||||||
Type | Data | RX-Cycle | Reset | ACK | ||||||||
Class | Lenght | |||||||||||
X Bytes | 2 Bytes | 5 bits | 3 bits | 5 bits | 3 bits | N Bytes | M Bytes | … | 6 bits | 1 bit | 1 bit | 2 Bytes |
1 Byte | 1 Byte | 1 Byte |
PREAMB. | DESTIN. ID (SYNC) | LENGTH | PROT. VER. | PAYLOAD | CTR/NODE | CRC | |||||
PARAM | PARAM 2 | … | |||||||||
Type | Data | RX-Cycle | RSSI | ||||||||
Class | Lenght | ||||||||||
X Bytes | 2 Bytes | 5 bits | 3 bits | 5 bits | 3 bits | N Bytes | M Bytes | … | 6 bits | 2 bits | 2 Bytes |
1 Byte | 1 Byte | 1 Byte |
Event | Duration (ms) | Avg. Power (mW) |
---|---|---|
treNch | ||
Start, TX (0 dBm) | 15.7 | 3.9 |
TX (from DSleep) | 700 × 10−3 | 9.8 |
TX (from PDown) | 819 × 10−3 | 12.7 |
TX Max. Pay. (27 B) | 1.5 | 10.7 |
+ RX | 1.1 | 4.2 |
Registering Cycle | 15.7 | 4.9 |
Deep Sleep | - | 5.4 × 10−3 |
Power Down | - | 360 × 10−6 |
BLE | ||
Conn.-TX (0 dBm) | 2.6 | 12.3 |
Conn.-TX Max. Pay. (23 B) | 2.7 | 18.9 |
Conn.-TX, RX | 2.7 | 14.2 |
Conn.-Advertising, Pairing | 5.6 × 10−3 | 1.1 |
Conn.-Keep Alive | 2.4 | 11.0 |
Conn.-Sleep | - | 5.4 × 10−3 |
Adv. - Start, TX (0 dBm) | 441.8 | 778 × 10−3 |
Adv. & Mesh-TX | 3.1 | 10.9 |
Adv. & Mesh-TX Max. Pay. (26 B) | 3.8 | 15.2 |
Adv. & Mesh-Sleep | - | 4.5 × 10−3 |
Mesh-TX, RX | 4.2 | 11.1 |
Mesh-Start, TX | 518.3 | 2.9 |
Energy of Active Phase (mJ) | ||
---|---|---|
No RX | With RX | |
treNch | 61 × 10−3 | 66 × 10−3 |
BLE conn. | 6.09 | 6.10 |
BLE adv./mesh | 344 × 10−3 | 1.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Cruz, F.; Toral-López, V.; Escobar-Molero, A.; Ruíz, V.U.; Rivadeneyra, A.; Morales, D.P. treNch: Ultra-Low Power Wireless Communication Protocol for IoT and Energy Harvesting. Sensors 2020, 20, 6156. https://doi.org/10.3390/s20216156
Moreno-Cruz F, Toral-López V, Escobar-Molero A, Ruíz VU, Rivadeneyra A, Morales DP. treNch: Ultra-Low Power Wireless Communication Protocol for IoT and Energy Harvesting. Sensors. 2020; 20(21):6156. https://doi.org/10.3390/s20216156
Chicago/Turabian StyleMoreno-Cruz, Fernando, Víctor Toral-López, Antonio Escobar-Molero, Víctor U. Ruíz, Almudena Rivadeneyra, and Diego P. Morales. 2020. "treNch: Ultra-Low Power Wireless Communication Protocol for IoT and Energy Harvesting" Sensors 20, no. 21: 6156. https://doi.org/10.3390/s20216156
APA StyleMoreno-Cruz, F., Toral-López, V., Escobar-Molero, A., Ruíz, V. U., Rivadeneyra, A., & Morales, D. P. (2020). treNch: Ultra-Low Power Wireless Communication Protocol for IoT and Energy Harvesting. Sensors, 20(21), 6156. https://doi.org/10.3390/s20216156