AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things
Abstract
:1. Introduction
2. Literature Review
3. Proposed AgriTrust Approach
3.1. Base Station to Sensor Trust Evaluation
Algorithm 1 Base Station to Sensor Direct Trust |
|
3.2. Base Station to Cloud Trust Evaluation
Algorithm 2 Base Station to Cloud Trust Evaluation |
|
3.3. Cloud to Base Station Trust Evaluation
Algorithm 3 Cloud to Base Station Trust Evaluation |
|
3.4. Indirect Trust Evaluation
4. Simulation and Results
4.1. Quality-of-Service Evaluation
4.2. Honest and Dishonest Precision Evaluation
4.3. Whitewashing Attack
4.4. On-off Attack
4.5. Energy Consumption
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Din, I.U.; Guizani, M.; Hassan, S.; Kim, B.S.; Khan, M.K.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A review of enabled technologies and future challenges. IEEE Access 2018, 7, 7606–7640. [Google Scholar] [CrossRef]
- Cao, L.; Cai, Y.; Yue, Y. Swarm Intelligence-Based Performance Optimization for Mobile Wireless Sensor Networks: Survey, Challenges, and Future Directions. IEEE Access 2019, 7, 161524–161553. [Google Scholar] [CrossRef]
- Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U. Intrusion prevention framework for secure routing in WSN-based mobile Internet of Things. IEEE Access 2019, 7, 185496–185505. [Google Scholar] [CrossRef]
- Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [Google Scholar] [CrossRef]
- Ali, W.; Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. A Lightweight Privacy-aware IoT-based Metering Scheme for Smart Industrial Ecosystems. IEEE Trans. Ind. Inform. 2020. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future Trends and Current State of Smart City Concepts: A Survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Rodrigues, J.J.; Hassan, S.; Korotaev, V.V. Machine learning in the Internet of Things: Designed techniques for smart cities. Future Gener. Comput. Syst. 2019, 100, 826–843. [Google Scholar] [CrossRef]
- Khattak, H.A.; Ameer, Z.; Din, U.I.; Khan, M.K. Cross-layer design and optimization techniques in wireless multimedia sensor networks for smart cities. Comput. Sci. Inf. Syst. 2019, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access 2019, 7, 89967–89979. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Almajed, H.; Mohiuddin, I.; Guizani, M. NeuroTrust-Artificial Neural Network-based Intelligent Trust Management Mechanism for Large-Scale Internet of Medical Things. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Islam, N.; Faheem, Y.; Din, I.U.; Talha, M.; Guizani, M.; Khalil, M. A blockchain-based fog computing framework for activity recognition as an application to e-Healthcare services. Future Gener. Comput. Syst. 2019, 100, 569–578. [Google Scholar] [CrossRef]
- Khan, S.U.; Islam, N.; Jan, Z.; Din, I.U.; Khan, A.; Faheem, Y. An e-Health care services framework for the detection and classification of breast cancer in breast cytology images as an IoMT application. Future Gener. Comput. Syst. 2019, 98, 286–296. [Google Scholar] [CrossRef]
- Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A survey on access control in the age of internet of things. IEEE Internet Things J. 2020, 7, 4682–4696. [Google Scholar] [CrossRef]
- Haseeb, K.; Almogren, A.; Ud Din, I.; Islam, N.; Altameem, A. SASC: Secure and Authentication-Based Sensor Cloud Architecture for Intelligent Internet of Things. Sensors 2020, 20, 2468. [Google Scholar] [CrossRef]
- Haseeb, K.; Almogren, A.; Islam, N.; Ud Din, I.; Jan, Z. An energy-efficient and secure routing protocol for intrusion avoidance in IoT-based WSN. Energies 2019, 12, 4174. [Google Scholar] [CrossRef] [Green Version]
- Awan, K.A.; Din, I.U.; Zareei, M.; Talha, M.; Guizani, M.; Jadoon, S.U. Holitrust-a holistic cross-domain trust management mechanism for service-centric Internet of Things. IEEE Access 2019, 7, 52191–52201. [Google Scholar] [CrossRef]
- Shahid, M.H.; Hameed, A.R.; ul Islam, S.; Khattak, H.A.; Din, I.U.; Rodrigues, J.J. Energy and delay efficient fog computing using caching mechanism. Comput. Commun. 2020, 154, 534–541. [Google Scholar] [CrossRef]
- Toor, A.; ul Islam, S.; Sohail, N.; Akhunzada, A.; Boudjadar, J.; Khattak, H.A.; Din, I.U.; Rodrigues, J.J. Energy and performance aware fog computing: A case of DVFS and green renewable energy. Future Gener. Comput. Syst. 2019, 101, 1112–1121. [Google Scholar] [CrossRef]
- Raju, K.L.; Vijayaraghavan, V. IoT Technologies in Agricultural Environment: A Survey. Wirel. Pers. Commun. 2020, 113, 2415–2446. [Google Scholar] [CrossRef]
- Din, I.U.; Asmat, H.; Guizani, M. A review of information centric network-based internet of things: Communication architectures, design issues, and research opportunities. Multimed. Tools Appl. 2019, 78, 30241–30256. [Google Scholar] [CrossRef]
- Khattak, H.A.; Tehreem, K.; Almogren, A.; Ameer, Z.; Din, I.U.; Adnan, M. Dynamic pricing in industrial internet of things: Blockchain application for energy management in smart cities. J. Inf. Secur. Appl. 2020, 55, 102615. [Google Scholar] [CrossRef]
- Almogren, A.; Mohiuddin, I.; Din, I.U.; Al Majed, H.; Guizani, N. FTM-IoMT: Fuzzy-based Trust Management for Preventing Sybil Attacks in Internet of Medical Things. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Asmat, H.; Din, I.U.; Ullah, F.; Talha, M.; Khan, M.; Guizani, M. ELC: Edge Linked Caching for content updating in information-centric Internet of Things. Comput. Commun. 2020, 156, 174–182. [Google Scholar] [CrossRef]
- Manzoor, A.; Shah, M.A.; Khattak, H.A.; Din, I.U.; Khan, M.K. Multi-tier authentication schemes for fog computing: Architecture, security perspective, and challenges. Int. J. Commun. Syst. 2019, e4033. [Google Scholar] [CrossRef]
- Krishnan, R.S.; Julie, E.G.; Robinson, Y.H.; Raja, S.; Kumar, R.; Thong, P.H. Fuzzy Logic based Smart Irrigation System using Internet of Things. J. Clean. Prod. 2020, 252, 119902. [Google Scholar] [CrossRef]
- Ummesalma, M.; Subbaiah, R.; Narasegouda, S. A Decade Survey on Internet of Things in Agriculture. In Internet of Things (IoT); Springer: Berlin/Heidelberg, Germany, 2020; pp. 351–370. [Google Scholar]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Shawky, L.A.; Eldrandaly, K. Grid quorum-based spatial coverage for IoT smart agriculture monitoring using enhanced multi-verse optimizer. Neural Comput. Appl. 2020, 32, 607–624. [Google Scholar] [CrossRef]
- Amitrano, C.; Chirico, G.B.; De Pascale, S.; Rouphael, Y.; De Micco, V. Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models. Sensors 2020, 20, 3110. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Diamantopoulos, T.; Symeonidis, A.L.; Theocharis, J.B.; Iossifides, A.; Chatzimisios, P.; Pratos, G.; Kouvas, D. Versatile Internet of Things for Agriculture: An eXplainable AI Approach. In IFIP Advances in Information and Communication Technology, Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Neos Marmaras, Greece, 5–7 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 180–191. [Google Scholar]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
- Zhang, H.; Sakurai, K. Blockchain for iot-based digital supply chain: A survey. In Advances in Internet, Data and Web Technologies, Proceedings of the International Conference on Emerging Internetworking, Data & Web Technologies, Kitakyushu, Japan, 24–26 February 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 564–573. [Google Scholar]
- Mishra, L.; Varma, S. Middleware Technologies for Smart Wireless Sensor Networks towards Internet of Things: A Comparative Review. Wirel. Pers. Commun. 2020, 1–36. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.N. Semantic and syntactic interoperability for agricultural open-data platforms in the context of IoT using crop-specific trait ontologies. Appl. Sci. 2020, 10, 4460. [Google Scholar] [CrossRef]
- Garrich, M.; Romero-Gzquez, J.L.; Moreno-Muro, F.J.; Hernndez-Bastida, M.; Bueno-Delgado, M.V.; Muqaddas, A.; Uniyal, N.; Nejabati, R.; Casellas, R.; de Dios, O.G.; et al. IT and Multi-layer Online Resource Allocation and Offline Planning in Metropolitan Networks. J. Light. Technol. 2020, 38, 3190–3199. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Dai, Q.; Zhao, B.; Han, D. Soil moisture sensor network design for hydrological applications. Hydrol. Earth Syst. Sci. 2020, 24, 2577–2591. [Google Scholar] [CrossRef]
- Feng, A.; Zhou, J.; Vories, E.D.; Sudduth, K.A.; Zhang, M. Yield estimation in cotton using UAV-based multi-sensor imagery. Biosyst. Eng. 2020, 193, 101–114. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Wei, Y.; Zeng, Q.; Wang, L. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. J. Hazard. Mater. 2020, 381, 120969. [Google Scholar] [CrossRef]
- Vasques, G.M.; Rodrigues, H.M.; Coelho, M.R.; Baca, J.F.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G.; Ceddia, M.B. Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Syst. 2020, 4, 52. [Google Scholar] [CrossRef]
- Wan, M.; Hu, W.; Qu, M.; Li, W.; Zhang, C.; Kang, J.; Hong, Y.; Chen, Y.; Huang, B. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy. Geoderma 2020, 363, 114163. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Singh, P.; Saikia, S. Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi module. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–4. [Google Scholar]
- Chae, M.; Kim, J.; Kim, H.; Ryu, H. Information quality for mobile internet services: A theoretical model with empirical validation. Electron. Mark. 2002, 12, 38–46. [Google Scholar] [CrossRef]
- Roopaei, M.; Rad, P.; Choo, K.K.R. Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Khan, S. StabTrust—A stable and centralized trust-based clustering mechanism for IoT enabled vehicular ad-hoc networks. IEEE Access 2020, 8, 21159–21177. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Altameem, A.; Jadoon, S.U. Robusttrust—A pro-privacy robust distributed trust management mechanism for internet of things. IEEE Access 2019, 7, 62095–62106. [Google Scholar] [CrossRef]
- Bose, J.; Dhas, J.P.M.; Cynthia, S. Enabling authenticity and integrity with Information Hiding for secure communication in Internet of Things. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–5. [Google Scholar]
- Mao, B.; Kawamoto, Y.; Kato, N. AI-based joint optimization of QoS and security for 6G energy harvesting internet of things. IEEE Internet Things J. 2020, 7, 7032–7042. [Google Scholar] [CrossRef]
- Alohali, B.; Vassilakis, V.G. Protecting data confidentiality in the cloud of things. In Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications; IGI Global: Pennsylvania, PA, USA, 2020; pp. 1112–1131. [Google Scholar]
- Lin, W.; Zhang, X.; Qi, L.; Li, W.; Li, S.; Sheng, V.S.; Nepal, S. Location-Aware Service Recommendations With Privacy-Preservation in the Internet of Things. IEEE Trans. Comput. Soc. Syst. 2020. [Google Scholar] [CrossRef]
- Lin, H.; Bergmann, N.W. IoT privacy and security challenges for smart home environments. Information 2016, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Sfar, A.R.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the Internet of Things. Digit. Commun. Netw. 2018, 4, 118–137. [Google Scholar] [CrossRef]
- Marcu, I.; Suciu, G.; Bălăceanu, C.; Vulpe, A.; Drăgulinescu, A.M. Arrowhead Technology for Digitalization and Automation Solution: Smart Cities and Smart Agriculture. Sensors 2020, 20, 1464. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yi, W.; Chen, Y.; He, H. Energy efficient smart irrigation system based on 6LoWPAN. In Cloud Computing and Security, Proceedings of the International Conference on Cloud Computing and Security, Haikou, China, 8–10 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 308–319. [Google Scholar]
- Kodali, R.K.; Sarjerao, B.S. A low cost smart irrigation system using MQTT protocol. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. [Google Scholar]
- Kumar, A.; Kamal, K.; Arshad, M.O.; Mathavan, S.; Vadamala, T. Smart irrigation using low-cost moisture sensors and XBee-based communication. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 333–337. [Google Scholar]
- Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Improving the security of internet of things using cryptographic algorithms: A case of smart irrigation systems. J. Ambient. Intell. Humaniz. Comput. 2020, 1–19. [Google Scholar] [CrossRef]
- Azhar, M.; Kuntoji, N.; Kumar, P.; Balaraj, T.; Muralidhara, G.D. Solar based security and smart irrigation system for agriculture. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 1298–1300. [Google Scholar]
- Munir, M.S.; Bajwa, I.S.; Cheema, S.M. An intelligent and secure smart watering system using fuzzy logic and blockchain. Comput. Electr. Eng. 2019, 77, 109–119. [Google Scholar] [CrossRef]
- Kamienski, C.; Kleinschmidt, J.; Soininen, J.P.; Kolehmainen, K.; Roffia, L.; Visoli, M.; Maia, R.F.; Fernandes, S. SWAMP: Smart water management platform overview and security challenges. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg, 25–28 June 2018; pp. 49–50. [Google Scholar]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.T.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pilli, E.S.; Mazumdar, A.P.; Gera, P. Towards trustworthy Internet of Things: A survey on Trust Management applications and schemes. Comput. Commun. 2020, 160, 475–493. [Google Scholar] [CrossRef]
- Chahal, R.K.; Kumar, N.; Batra, S. Trust management in social Internet of Things: A taxonomy, open issues, and challenges. Comput. Commun. 2020, 150, 13–46. [Google Scholar] [CrossRef]
- Jayashankar, P.; Nilakanta, S.; Johnston, W.J.; Gill, P.; Burres, R. IoT adoption in agriculture: The role of trust, perceived value and risk. J. Bus. Ind. Mark. 2018, 33, 804–821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, K.A.; Ud Din, I.; Almogren, A.; Almajed, H. AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things. Sensors 2020, 20, 6174. https://doi.org/10.3390/s20216174
Awan KA, Ud Din I, Almogren A, Almajed H. AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things. Sensors. 2020; 20(21):6174. https://doi.org/10.3390/s20216174
Chicago/Turabian StyleAwan, Kamran Ahmad, Ikram Ud Din, Ahmad Almogren, and Hisham Almajed. 2020. "AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things" Sensors 20, no. 21: 6174. https://doi.org/10.3390/s20216174
APA StyleAwan, K. A., Ud Din, I., Almogren, A., & Almajed, H. (2020). AgriTrust—A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things. Sensors, 20(21), 6174. https://doi.org/10.3390/s20216174