Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser
Abstract
:1. Introduction
2. Generation of Dual-Frequency Laser
3. Setup and Principle of DFDL System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dong, P.; Chen, Q. LiDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Quackenbush, L.J.; Im, I.; Zuo, Y. Road extraction: A review of LiDAR-focused studies. Remote Sens. Nat. Resour. 2013, 9, 155–169. [Google Scholar]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Sathe, A.; Mann, J. A review of turbulence measurements using ground-based wind lidars. Atmos. Meas. Tech. 2013, 6, 3147–3167. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Kim, S.; Sohn, K. High-precision depth estimation using uncalibrated LiDAR and stereo fusion. IEEE Trans. Intell. Transp. Syst. 2019, 21, 321–335. [Google Scholar] [CrossRef]
- Debeunne, C.; Vivet, D. A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping. Sensors 2020, 20, 2068. [Google Scholar] [CrossRef] [Green Version]
- Chanin, M.; Garnier, A.; Hauchecorne, A.; Porteneuve, J. A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett. 1989, 16, 1273–1276. [Google Scholar] [CrossRef]
- Gentry, B.M.; Chen, H.; Li, S.X. Wind measurements with 355-nm molecular Doppler lidar. Opt. Lett. 2000, 25, 1231–1233. [Google Scholar] [CrossRef] [Green Version]
- Frehlich, R.; Cornman, L. Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Ocean. Technol. 2002, 19, 355–366. [Google Scholar] [CrossRef]
- Afanasiev, A.; Banakh, V.; Gordeev, E.; Marakasov, D.; Sukharev, A.; Falits, A. Verification of a passive correlation optical crosswind velocity meter in experiments with a Doppler wind lidar. Atmos. Ocean. Opt. 2017, 30, 574–580. [Google Scholar] [CrossRef]
- Pearson, G.; Davies, F.; Collier, C. An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Ocean. Technol. 2009, 26, 240–250. [Google Scholar] [CrossRef]
- Eberhard, W.L.; Cupp, R.E.; Healy, K.R. Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Ocean. Technol. 1989, 6, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.; Chan, S.-C.; Liu, J.-M. Lidar detection using a dual-frequency source. Opt. Lett. 2006, 31, 3600–3602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-H.; Lee, C.-W.; Lin, T.-W.; Lin, F.-Y. Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement. Opt. Express 2012, 20, 20255–20265. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Lin, L.-C.; Lin, F.-Y. Self-mixing dual-frequency laser Doppler velocimeter. Opt. Express 2014, 22, 3600–3610. [Google Scholar] [CrossRef]
- Vercesi, V.; Onori, D.; Laghezza, F.; Scotti, F.; Bogoni, A.; Scaffardi, M. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures. Opt. Lett. 2015, 40, 1358–1361. [Google Scholar] [CrossRef]
- Thévenin, J.; Vallet, M.; Brunel, M.; Gilles, H.; Girard, S. Beat-note locking in dual-polarization lasers submitted to frequency-shifted optical feedback. J. Opt. Soc. Am. B 2011, 28, 1104–1110. [Google Scholar] [CrossRef]
- Juan, Y.-S.; Lin, F.-Y. Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser. IEEE Photonics J. 2011, 3, 644–650. [Google Scholar] [CrossRef]
- Kang, Y.; Cheng, L.; Yang, S.; Zhao, C.; Zhang, H.; He, T. 50 W low noise dual-frequency laser fiber power amplifier. Opt. Express 2016, 24, 9202–9208. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, H.; Xia, W.; Guo, D.; Hao, H.; Wang, M. Self-mixing birefringent dual-frequency laser Doppler velocimeter. Opt. Express 2017, 25, 560–572. [Google Scholar] [CrossRef]
- Soriano, M.C.; García-Ojalvo, J.; Mirasso, C.R.; Fischer, I. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 2013, 85, 421–470. [Google Scholar] [CrossRef] [Green Version]
- Donati, S. Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev. 2012, 6, 393–417. [Google Scholar] [CrossRef]
- Li, K.; Cavedo, F.; Pesatori, A.; Zhao, C.; Norgia, M. Balanced detection for self-mixing interferometry. Opt. Lett. 2017, 42, 283–285. [Google Scholar] [CrossRef]
- Shi, L.; Guo, D.; Cui, Y.; Hao, H.; Xia, W.; Wang, Y.; Ni, X.; Wang, M. Design of a multiple self-mixing interferometer for a fiber ring laser. Opt. Lett. 2018, 43, 4124–4127. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Liu, B.; Yu, Y.; Xi, J.; Guo, Q.; Tong, J. High sensitive sensing by a laser diode with dual optical feedback operating at period-one oscillation. Appl. Phys. Lett. 2019, 115, 011102. [Google Scholar] [CrossRef]
- Amin, S.; Zabit, U.; Bernal, O.D.; Hussain, T. High Resolution Laser Self-Mixing Displacement Sensor under Large Variation in Optical Feedback and Speckle. IEEE J. 2020, 20, 9140–9147. [Google Scholar]
- Uchida, A. Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zhang, B.; Zhu, D.; Zhou, P.; Xie, C.; Pan, S. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser. Appl. Opt. 2019, 58, 5479–5485. [Google Scholar] [CrossRef]
- Zhou, P.; Li, N.; Pan, S. Photonic microwave harmonic down-converter based on stabilized period-one nonlinear dynamics of semiconductor lasers. Opt. Lett. 2019, 44, 4869–4872. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, N.; Liu, S.; Xue, C.; Qiu, K. Wideband time delay signature-suppressed chaos generation using self-phase-modulated feedback semiconductor laser cascaded with dispersive component. J. Lightwave Technol. 2019, 37, 5132–5139. [Google Scholar] [CrossRef]
- Liu, B.; Ruan, Y.; Yu, Y.; Guo, Q.; Xi, J.; Tong, J. Modeling for optical feedback laser diode operating in period-one oscillation and its application. Opt. Express 2019, 27, 4090–4104. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Hwang, S.-K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar] [CrossRef]
- Nie, B.; Ruan, Y.; Yu, Y.; Guo, Q.; Xi, J.; Tong, J. Period-one Microwave Photonic Sensing by a Laser Diode with Optical Feedback. J. Lightwave Technol. 2020, 38, 5423–5429. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Diaz, R.; Chan, S.-C.; Liu, J.-M. Dual-frequency multifunction lidar. In Free-Space Laser Communication Technologies XIX and Atmospheric Propagation of Electromagnetic Waves; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; p. 64570. [Google Scholar]
- Chen, G.; Lu, D.; Guo, L.; Zhao, W.; Wang, H.; Zhao, L. Dual-frequency Laser Doppler Velocimeter based on Integrated Dual-mode Amplified Feedback Laser. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection. In Proceedings of the IEEE Radar Conference, Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5. [Google Scholar]
Symbol | Physical Meaning | Value | |
---|---|---|---|
LD Internal Parameters | Model gain coefficient | ||
Carrier density at transparency | |||
Nonlinear gain compression coefficient | |||
Confinement factor | |||
Photon lifetime | |||
Carrier lifetime | |||
Internal cavity round-trip time | |||
Elementary charge | |||
Volume of the active region | |||
Unperturbed optical angular frequency of a laser diode, , where is the speed of light, is the wavelength of the LD | |||
Line-width enhancement factor | |||
LD Controllable Parameters | Injection current | ||
Feedback strength | |||
External cavity length | |||
External cavity round trip time, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yu, Y.; Ruan, Y.; Nie, B.; Xi, J.; Guo, Q.; Tong, J. Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser. Sensors 2020, 20, 6303. https://doi.org/10.3390/s20216303
Chen Z, Yu Y, Ruan Y, Nie B, Xi J, Guo Q, Tong J. Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser. Sensors. 2020; 20(21):6303. https://doi.org/10.3390/s20216303
Chicago/Turabian StyleChen, Zhuqiu, Yanguang Yu, Yuxi Ruan, Bairun Nie, Jiangtao Xi, Qinghua Guo, and Jun Tong. 2020. "Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser" Sensors 20, no. 21: 6303. https://doi.org/10.3390/s20216303
APA StyleChen, Z., Yu, Y., Ruan, Y., Nie, B., Xi, J., Guo, Q., & Tong, J. (2020). Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser. Sensors, 20(21), 6303. https://doi.org/10.3390/s20216303