Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand
Abstract
:1. Introduction
2. Related Work
3. Sensors and Locomotion Activities
3.1. Sensors
3.2. Locomotion Activities
4. Activity Recognition
4.1. Analytical Transformations
Outlier Detection
4.2. Codebook
Outlier Detection
4.3. Statistical Features
Outlier Detection
5. Experiments
5.1. Dataset and Measuring Setup
5.2. Results for Analytical Transformations
Outlier Detection
5.3. Results for Codebook
Outlier Detection
5.4. Results for Statistical Features
Outlier Detection
5.5. Comparison and Discussion
6. Conclusions
Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Labrador, M.A.; Yejas, O.D.L. Human Activity Recognition: Using Wearable Sensors and Smartphones; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. Commun. Surv. Tutor. 2012, 15, 1192–1209. [Google Scholar] [CrossRef]
- Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In International Conference on Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17. [Google Scholar]
- Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA, 3–5 April 2006. [Google Scholar]
- Zhou, B.; Li, Q.; Mao, Q.; Tu, W.; Zhang, X. Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones. Trans. Hum.-Mach. Syst. 2014, 45, 562–574. [Google Scholar] [CrossRef]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Ebner, F.; Deinzer, F.; Köping, L.; Grzegorzek, M. Robust Self-Localization using Wi-Fi, Step/Turn-Detection and Recursive Density Estimation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 1–9. [Google Scholar]
- Fetzer, T.; Ebner, F.; Bullmann, M.; Deinzer, F.; Grzegorzek, M. Smartphone-Based Indoor Localization within a 13th Century Historic Building. Sensors 2018, 18, 4095. [Google Scholar] [CrossRef] [Green Version]
- Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Wi-Fi Model Optimizations for Smartphone-Based Indoor Localization. ISPRS Int. J. Geo-Inf. 2017, 6, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.; Piché, R. A Survey of Selected Indoor Positioning Methods for Smartphones. IEEE Commun. Surv. Tutor. 2016, 19, 1347–1370. [Google Scholar] [CrossRef]
- Ebner, F.; Fetzer, T.; Deinzer, F.; Köping, L.; Grzegorzek, M. Multi Sensor 3D Indoor Localisation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–11. [Google Scholar]
- Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Prior Navigation Knowledge in Multi Sensor Indoor Localisation. In Proceedings of the 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 557–564. [Google Scholar]
- Fetzer, T.; Ebner, F.; Deinzer, F.; Köping, L.; Grzegorzek, M. On Monte Carlo Smoothing in Multi Sensor Indoor Localisation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar]
- Guo, X.; Ansari, N.; Hu, F.; Shao, Y.; Elikplim, N.R.; Li, L. A Survey on Fusion-Based Indoor Positioning. IEEE Commun. Surv. Tutor. 2019, 22, 566–594. [Google Scholar] [CrossRef]
- Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of Posture and Motion by Accelerometry: A Validation Study in Ambulatory Monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [Google Scholar] [CrossRef]
- Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors. ACM Comput. Surv. (CSUR) 2014, 46. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Shirahama, K.; Köping, L.; Grzegorzek, M. Codebook Approach for Sensor-based Human Activity Recognition. In Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct; ACM: New York, NY, USA, 2016. [Google Scholar]
- Shirahama, K.; Grzegorzek, M. On the Generality of Codebook Approach for Sensor-Based Human Activity Recognition. Electronics 2017, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Lester, J.; Choudhury, T.; Borriello, G. A Practical Approach to Recognizing Physical Activities. In International Conference on Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Quaid, M.A.K.; Jalal, A. Wearable Sensors Based Human Behavioral Pattern Recognition Using Statistical Features and Reweighted Genetic Algorithm. Multimed. Tools Appl. 2020, 79, 6061–6083. [Google Scholar] [CrossRef]
- Su, X.; Tong, H.; Ji, P. Activity Recognition with Smartphone Sensors. Tsinghua Sci. Technol. 2014, 19, 235–249. [Google Scholar]
- Morales, J.; Akopian, D. Physical Activity Recognition by Smartphones, a Survey. Biocybern. Biomed. Eng. 2017, 37, 388–400. [Google Scholar] [CrossRef]
- Saeedi, S.; El-Sheimy, N. Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation Application. Micromachines 2015, 6, 1100–1134. [Google Scholar] [CrossRef]
- Yang, J. Toward Physical Activity Diary: Motion Recognition Using Simple Acceleration Features with Mobile Phones. In Proceedings of the International Workshop on Interactive Multimedia for Consumer Electronics; ACM: New York, NY, USA, 2009. [Google Scholar]
- Ustev, Y.E.; Durmaz Incel, O.; Ersoy, C. User, Device and Orientation Independent Human Activity Recognition on Mobile Phones: Challenges and a Proposal. In Proceedings of the Conference on Pervasive and Ubiquitous Computing Adjunct Publication; ACM: New York, NY, USA, 2013. [Google Scholar]
- Siirtola, P.; Röning, J. Recognizing Human Activities User-independently on Smartphones Based on Accelerometer Data. IJIMAI 2012, 1, 38–45. [Google Scholar] [CrossRef]
- Shoaib, M.; Scholten, H.; Havinga, P.J. Towards Physical Activity Recognition Using Smartphone Sensors. In Proceedings of the International Conference on Ubiquitous Intelligence and Computing, Vietri sul Mere, Italy, 18–21 December 2013. [Google Scholar]
- Shoaib, M.; Bosch, S.; Incel, O.; Scholten, H.; Havinga, P. Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors 2014, 14, 10146–10176. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, D.; Li, B.; Guo, B.; Li, S. Activity Recognition on an Accelerometer Embedded Mobile Phone with Varying Positions and Orientations. In International Conference on Ubiquitous Intelligence and Computing; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Tran, D.N.; Phan, D.D. Human Activities Recognition in Android Smartphone Using Support Vector Machine. In Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016. [Google Scholar]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In Ambient Assisted Living and Home Care; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Anjum, A.; Ilyas, M.U. Activity Recognition Using Smartphone Sensors. In Proceedings of the Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013. [Google Scholar]
- Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing Techniques for Context Recognition from Accelerometer Data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, S.B. Activity recognition using hierarchical hidden markov models on a smartphone with 3D accelerometer. In International Conference on Hybrid Artificial Intelligence Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 460–467. [Google Scholar]
- Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV. In Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008. [Google Scholar]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Complementary Filter Design on the Special Orthogonal Group SO(3). In Proceedings of the Conference on Decision and Control, Seville, Spain, 15 December 2005. [Google Scholar]
- Madgwick, S. An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays. Rep. X-Io Univ. Bristol (UK) 2010, 25, 113–118. [Google Scholar]
- Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of Imu and Marg Orientation Using a Gradient Descent Algorithm. In Proceedings of the International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar]
- Yang, J.; Lu, H.; Liu, Z.; Boda, P.P. Physical Activity Recognition with Mobile Phones: Challenges, Methods, and Applications. In Multimedia Interaction and Intelligent User Interfaces; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Mohd-Yasin, F.; Nagel, D.; Korman, C. Noise in MEMS. Meas. Sci. Technol. 2009, 21, 012001. [Google Scholar] [CrossRef]
- Pedley, M. High Precision Calibration of a Three-Axis Accelerometer. Free Semicond. Appl. Note 2013, 1–41. [Google Scholar]
- Maxwell Donelan, J.; Kram, R.; Arthur D, K. Mechanical and Metabolic Determinants of the Preferred Step Width in Human Walking. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1985–1992. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Dasgupta, S.; Ramirez, E.E.; Peterson, C.; Norman, G.J. Classification Accuracies of Physical Activities Using Smartphone Motion Sensors. J. Med. Internet Res. 2012, 14, e130. [Google Scholar] [CrossRef] [PubMed]
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D. A Comparison of Feature Extraction Methods for the Classification of Dynamic Activities From Accelerometer Data. Trans. Biomed. Eng. 2008, 56, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis. In Proceedings of the International Conference on Future Information Technology, Busan, Korea, 21–23 May 2010. [Google Scholar]
- Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.R. Fisher Discriminant Analysis with Kernels. In Proceedings of the Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, Madison, WI, USA, 25 August 1999; pp. 41–48.
- Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity Recognition from Accelerometer Data. In Proceedings of the Conference on Artificial Intelligence (AAAI), Pittsburgh, Pennsylvania, 9–13 July 2005; Volume 5. [Google Scholar]
- Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and Complex Activity Recognition through Smart Phones. In Proceedings of the International Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012. [Google Scholar]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity Recognition Using Cell Phone Accelerometers. SigKDD Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Morales, J.; Akopian, D.; Agaian, S. Human Activity Recognition by Smartphones Regardless of Device Orientation. In Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications; International Society for Optics and Photonics (SPIE): Toulouse, France, 2014; Volume 9030. [Google Scholar]
- Cano, P.; Batle, E.; Kalker, T.; Haitsma, J. A Review of Algorithms for Audio Fingerprinting. In Proceedings of the Workshop on Multimedia Signal Processing, St. Thomas, VI, USA, 9–11 December 2002. [Google Scholar]
- Miluzzo, E.; Lane, N.D.; Fodor, K.; Peterson, R.; Lu, H.; Musolesi, M.; Eisenman, S.B.; Zheng, X.; Campbell, A.T. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application. In Proceedings of the Conference on Embedded Network Sensor Systems; ACM: New York, NY, USA, 2008. [Google Scholar]
- Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M.; Tsiknakis, M. The MobiAct Dataset: Recognition of Activities of Daily Living using Smartphones. ICT4AgeingWell 2016, 143–151. [Google Scholar]
- Ebner, M.; Ebner, F.; Fetzer, T.; Bullmann, M.; Köping, L. SensorReadoutApp. 2020. Available online: https://github.com/simpleLoc/SensorReadoutApp (accessed on 24 April 2020).
- Ebner, M.; Ebner, F.; Fetzer, T.; Bullmann, M.; Köping, L. Recording Walks With the simpleLoc SensorReadout App. 2020. Available online: https://youtu.be/2Ea_crH0Ds4 (accessed on 15 September 2020).
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Rao, C.R. The Utilization of Multiple Measurements in Problems of Biological Classification. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 159–203. [Google Scholar] [CrossRef]
- Martínez, A.M.; Kak, A.C. PCA versus LDA. Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Pires, I.M.; Marques, G.; Garcia, N.M.; Flórez-Revuelta, F.; Canavarro Teixeira, M.; Zdravevski, E.; Spinsante, S.; Coimbra, M. Pattern Recognition Techniques for the Identification of Activities of Daily Living Using a Mobile Device Accelerometer. Electronics 2020, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.F.; Lin, C.J.; Weng, R.C. Probability Estimates for Multi-class Classification by Pairwise Coupling. J. Mach. Learn. Res. 2004, 5, 975–1005. [Google Scholar]
- Lara, O.D.; Pérez, A.J.; Labrador, M.A.; Posada, J.D. Centinela: A Human Activity Recognition System Based on Acceleration and Vital Sign Data. Pervasive Mob. Comput. 2012, 8, 717–729. [Google Scholar] [CrossRef]
- Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y. A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone. Sens. J. 2016, 16, 4566–4578. [Google Scholar] [CrossRef]
- Kaiser, S.; Lang, C. Detecting Elevators and Escalators in 3D Pedestrian Indoor Navigation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016. [Google Scholar]
Virtual Sensor (Metric) | For Accelerometer | For Gyroscope | Calculated per Sample | Calculated per Channel | Channels (Dimensions) |
---|---|---|---|---|---|
Magnitude | ✓ | - | ✓ | - | 1 |
Standard Deviation | ✓ | ✓ | - | ✓ | 3 |
Root mean square | ✓ | ✓ | ✓ | ✓ | 3 |
Inclination | ✓ | - | ✓ | - | 2 |
Features | Calculated per Channel | Calculated on Sensor | Channels (Dimensions) |
---|---|---|---|
MFCC | yes | Accelerometer | |
Gyroscope | |||
Accelerometer Magnitude | |||
Gyroscope Magnitude | |||
AR-Coefficients | yes | Accelerometer | |
SMA | no | Accelerometer | 1 |
Gyro | 1 | ||
Integration | yes | Gyroscope | 3 |
Variance | yes | Inclination | 2 |
Acceleration Magnitude | 1 | ||
Gyroscope Magnitude | 1 | ||
Max | yes | Inclination | 2 |
Inclination Gradient | 2 | ||
Min | yes | Inclination | 2 |
Inclination Gradient | 2 | ||
Entropy | yes | Acceleration | |
Gyroscope | 3 | ||
Correlation | no | Acceleration | |
Gyroscope | 3 | ||
75th Percentile | yes | Acceleration Magnitude | 1 |
Gyroscope Magnitude | 1 |
Approach | KNN | SVM | Outlier Detect | Configuration | ||
---|---|---|---|---|---|---|
Hand | Hand | |||||
Analytical Transform | % (%) | % (%) | % (%) | % (%) | % | PCA 5-dim, , raw acceleration |
Codebook | % (%) | % (%) | % (%) | % (%) | % | , , , raw acceleration |
Statistical Features | % (%) | % (%) | % (%) | % (%) | % | LDA 5-dim, , , , , two-channel acceleration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebner, M.; Fetzer, T.; Bullmann, M.; Deinzer, F.; Grzegorzek, M. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors 2020, 20, 6559. https://doi.org/10.3390/s20226559
Ebner M, Fetzer T, Bullmann M, Deinzer F, Grzegorzek M. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors. 2020; 20(22):6559. https://doi.org/10.3390/s20226559
Chicago/Turabian StyleEbner, Markus, Toni Fetzer, Markus Bullmann, Frank Deinzer, and Marcin Grzegorzek. 2020. "Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand" Sensors 20, no. 22: 6559. https://doi.org/10.3390/s20226559
APA StyleEbner, M., Fetzer, T., Bullmann, M., Deinzer, F., & Grzegorzek, M. (2020). Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors, 20(22), 6559. https://doi.org/10.3390/s20226559