In Situ Detection of Water Leakage for Textile-Reinforced Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Conductive Yarns
2.1.2. Distilled Water
2.1.3. Resin
2.1.4. Design and Production of Sample: Implementation
2.2. Methods of Characterization
2.2.1. Scanning Electron Microscope (SEM)
2.2.2. Measure of the Electrical Conductivity
3. Results and Discussion
3.1. Preparation of the Samples and Repeatability of the Tests
3.1.1. Resin Influence on the Yarns’ Conductivity
3.1.2. Cracking Mechanism’s Influence
3.2. Principles of Water Detection
3.2.1. Principle of Absorption
3.2.2. Principle of the Short Circuit
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El Kadi, M.; Kapsalis, P.; Van Hemelrijck, D.; Wastiels, J.; Tysmans, T. Influence of Loading Orientation and Knitted Versus Woven Transversal Connections in 3D Textile Reinforced Cement (TRC) Composites. Appl. Sci. 2020, 10, 4517. [Google Scholar] [CrossRef]
- Quadflieg, T.; Tomoscheit, S.; Gries, T. Humidity and Strain Monitoring for Textile Reinforced Concrete. In Proceedings of the Second Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Istanbul, Turkey, 9–11 September 2013. [Google Scholar]
- Tamiatto, C. Conception et Analyse du Comportement d’un Composite à Capteur Intégré en Fibres de Carbone Pour la Détection in-situ des Endommagements d’une Structure verre/résine. Ph.D. Thesis, Université des sciences et technologies de Lille, Lille, France, November 1998. [Google Scholar]
- Lecoy, P. Les fibres optiques en capteurs et en instrumentation. La Revue 3 E. I n°85. 2016. Available online: https://hal.archives-ouvertes.fr/hal-01363852 (accessed on 12 November 2020).
- Myles, A. Permanent Leak Detection on Pipes Using a Fibre Optic Based Continuous Sensor Technology. In Pipelines 2011: A Sound Conduit for Sharing Solutions; American Society of Civil Engineers: Seattle, WA, USA, 2011; pp. 744–754. [Google Scholar]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Sahakian, J.A. Liquid Leak Detection Cable 1993. Available online: https://patentimages.storage.googleapis.com/5a/97/54/cafba22683f1a9/US5177996.pdf (accessed on 12 January 1993).
- Solutions de Détection des Fuites de Produits Liquides par TTK. Available online: http://www.ttk.fr/a-propos-de-ttk/solutions-de-detection-des-fuites-de-produits-liquides-par-ttk/ (accessed on 10 May 2019).
- Encre conductrice, cuivre, nanoparticule, électronique imprimée, RFID, OLED, batterie, pile, INP Grenoble. 2015. Available online: http://cerig.pagora.grenoble-inp.fr/memoire/2015/encre-conductrice-cuivre.htm (accessed on 12 May 2015).
- Su, P.-G.; Kuo, X.-R. Low-humidity sensing properties of carboxylic acid functionalized carbon nanomaterials measured by a quartz crystal microbalance. Sens. Actuators A Phys. 2014, 205, 126–132. [Google Scholar] [CrossRef]
- Tai, H.; Zhen, Y.; Liu, C.; Ye, Z.; Xie, G.; Du, X.; Jiang, Y. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sens. Actuators B Chem. 2016, 230, 501–509. [Google Scholar] [CrossRef]
- Sun, A.; Li, Z.; Wei, T.; Li, Y.; Cui, P. Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens. Actuators B Chem. 2009, 142, 197–203. [Google Scholar] [CrossRef]
- Yoo, K.-P.; Lim, L.-T.; Min, N.-K.; Lee, M.J.; Lee, C.J.; Park, C.-W. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators B Chem. 2010, 145, 120–125. [Google Scholar] [CrossRef]
- Shah, M.; Ahmad, Z.; Sulaiman, K.; Karimov, K.S.; Sayyad, M.H. Carbon nanotubes’ nanocomposite in humidity sensors. Solid-State Electron. 2012, 69, 18–21. [Google Scholar] [CrossRef]
- Pötschke, P.; Andres, T.; Villmow, T.; Pegel, S.; Brünig, H.; Kobashi, K.; Fischer, D.; Häussler, L. Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol. 2010, 70, 343–349. [Google Scholar] [CrossRef]
- Qi, H.; Mäder, E.; Liu, J. Unique water sensors based on carbon nanotube–cellulose composites. Sens. Actuators B Chem. 2013, 185, 225–230. [Google Scholar] [CrossRef]
- Narkis, M.; Srivastava, S.; Tchoudakov, R.; Breuer, O. Sensors for liquids based on conductive immiscible polymer blends. Synth. Met. 2000, 113, 29–34. [Google Scholar] [CrossRef]
- Fan, Q.; Qin, Z.; Villmow, T.; Pionteck, J.; Pötschke, P.; Wu, Y.; Voit, B.; Zhu, M. Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sens. Actuators B Chem. 2011, 156, 63–70. [Google Scholar] [CrossRef]
- Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P. Liquid sensing: Smart polymer/CNT composites. Mater. Today 2011, 14, 340–345. [Google Scholar] [CrossRef]
- Castro, M.; Kumar, B.; Feller, J.F.; Haddi, Z.; Amari, A.; Bouchikhi, B. Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens. Actuators B Chem. 2011, 159, 213–219. [Google Scholar] [CrossRef]
- Villmow, T.; John, A.; Pötschke, P.; Heinrich, G. Polymer/carbon nanotube composites for liquid sensing: Selectivity against different solvents. Polymer 2012, 53, 2908–2918. [Google Scholar] [CrossRef]
- Xu, S.; Ma, Q.; Yang, X.; Wang, S.-D. Design and fabrication of a flexible woven smart fabric based highly sensitive sensor for conductive liquid leakage detection. RSC Adv. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Parkova, I.; Ziemele, I.; Vi, A. Fabric Selection for Textile Moisture Sensor Design. Mater. Sci. Text. Cloth. Technol. 2012, 7, 38–43. [Google Scholar]
- Han, B.; Yu, X.; Ou, J. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010, 45, 3714–3719. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Rabinovitch, O.; Fishbain, B.; Quadflieg, T.; Gries, T. Sensory carbon fiber based textile-reinforced concrete for smart structures. J. Intell. Mater. Syst. Struct. 2016, 27, 469–489. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Quadflieg, T.; Gries, T.; Rabinovitch, O. Smart textile reinforcement with embedded stainless steel yarns for the detection of wetting and infiltration in TRC structures. Sens. Actuators A Phys. 2016, 243, 139–150. [Google Scholar] [CrossRef]
- Eutionnat-Diffo, P.A.; Cayla, A.; Chen, Y.; Guan, J.; Nierstrasz, V.; Campagne, C. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing. Polymers 2020, 12, 2300. [Google Scholar] [CrossRef]
- Pereira, T.; Silva, P.; Carvalho, H.; Carvalho, M. Textile moisture sensor matrix for monitoring of disabled and bed-rest patients. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Tseghai, G.B.; Malengier, B.; Nigusse, A.B.; Langenhove, L.V. Development and evaluation of resistive pressure sensors from electro-conductive textile fabric. In Proceedings of the Second International Forum on Textiles for Graduate Students, Tianjin Polytechnic University, Tianjin, China, 8–10 September 2018; pp. 651–657. [Google Scholar]
- Tissus Climatisants. Available online: http://spivet.perso.libertysurf.fr/climatisants.htm#up (accessed on 13 July 2020).
- Azeem, M.; Boughattas, A.; Wiener, J.; Havelka, A. Mechanism of liquid water transport in fabrics; A review. Fibres Text. 2017, 24, 58–65. [Google Scholar]
- Shahzad, A.; Ali, Z.; Ali, U.; Khaliq, Z.; Zubair, M.; Kim, I.S.; Hussain, T.; Khan, M.Q.; Rasheed, A.; Qadir, M.B. Development and characterization of conductive ring spun hybrid yarns. J. Text. Inst. 2019, 110, 141–150. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasheed, A.; Khaliq, Z.; Qadir, M.B.; Khan, M.Q.; Hamdani, S.T.A.; Ali, Z.; Afzal, A.; Irfan, M.; Shafiq, M.; et al. Processing of metallic fiber hybrid spun yarns for better electrical conductivity. Mater. Manuf. Process. 2019, 34, 1008–1015. [Google Scholar] [CrossRef]
- Yin, J.; D’Haese, C.; Nysten, B. Surface electrical properties of stainless steel fibres: An AFM-based study. Appl. Surf. Sci. 2015, 330, 65–73. [Google Scholar] [CrossRef]
- Gaubert, V.; Gidik, H.; Koncar, V. Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis. Sensors 2020, 20, 3546. [Google Scholar] [CrossRef]
- Martínez-Estrada, M.; Moradi, B.; Fernández-Garcia, R.; Gil, I. Impact of Conductive Yarns on an Embroidery Textile Moisture Sensor. Sensors 2019, 19, 1004. [Google Scholar] [CrossRef] [Green Version]
Physical Structure | Blend Proportion (% by Weight) | Fineness (Tex) | Yarn Conductivity (S/m) | Abbreviation | |
---|---|---|---|---|---|
Stainless steel/Polyacrylate | Spun yarn | 20/80 | 188 | 8.95 × 103 | SS20/PAC80 |
Stainless steel/Viscose | 20/80 | 185 | 1.55 × 104 | SS20/VIS80 | |
Stainless steel/Polyethylene terephthalate | 5/95 | 203 | 6.52 × 102 | SS5/PET95 | |
Stainless steel/Polyethylene terephthalate | 10/90 | 189 | 1.37 × 103 | SS10/PET90 | |
Stainless steel/Polyethylene terephthalate | 20/80 | 207 | 1.39 × 103 | SS20/PET80 | |
Stainless steel/Polyethylene terephthalate | 60/40 | 196 | 1.85 × 104 | SS60/PET40 |
Physical Structure | Fineness (Tex) | Yarn Conductivity (S/m) | Abbreviation | |
---|---|---|---|---|
Stainless steel | Multifilament | 500 | 7.32 × 105 | SSmulti |
Stainless steel | Spun yarn | 501 | 9.45 × 105 | SSspun |
Physical Structure | Fineness (Tex) | CPC Conductivity (S/m) | Abbreviation | |
---|---|---|---|---|
pa12 + 3%CNT 1 + 14%cb 1 | Multifilament | 967 | 8.49 × 10−3 | PA12CNT+CB |
pp/(pcl + 4%CNT) coated stainless steel | Monofilament | 601 | 2.27 | SS/(PP50/PCLCNT50) |
pbe/(pe + 10%kb + 2.5%cnt) | Monofilament | 2804 | 1.57 × 10−1 | PBE60/PEKB+CNT40 |
Name | Abbreviation | Initial State of Yarns | Final State of Yarn |
---|---|---|---|
Water detector sensitivity | Sw | Dry yarn (before water droplet deposition) | Wetted yarn (after water droplet deposition) |
Rate of change in the yarn’s electrical conductivity in a resin membrane | Rr | Dry yarn | Resin yarn |
Rate of change in the yarn’s electrical conductivity in a cracked resin membrane | Rc | Resin yarn | Cracked resin yarn |
Membrane sensitivity | Sw’ | Cracked resin yarn | Cracked resin yarn after droplet deposition |
Rate of Change Rc (%) | Standard Deviation (%) | |
---|---|---|
SS20/PET80 | −18.09 | 36 |
SS60/PET40 | −68.73 | 26 |
Conductance of the Yarn in the Resin G (S) | Standard Deviation (S) | |
---|---|---|
SS20/PET80 | 6.5 × 10−8 | 9.65 × 10−9 |
SS60/PET40 | 6.39 × 10−8 | 1.06 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regnier, J.; Cayla, A.; Campagne, C.; Devaux, E. In Situ Detection of Water Leakage for Textile-Reinforced Composites. Sensors 2020, 20, 6641. https://doi.org/10.3390/s20226641
Regnier J, Cayla A, Campagne C, Devaux E. In Situ Detection of Water Leakage for Textile-Reinforced Composites. Sensors. 2020; 20(22):6641. https://doi.org/10.3390/s20226641
Chicago/Turabian StyleRegnier, Julie, Aurélie Cayla, Christine Campagne, and Eric Devaux. 2020. "In Situ Detection of Water Leakage for Textile-Reinforced Composites" Sensors 20, no. 22: 6641. https://doi.org/10.3390/s20226641
APA StyleRegnier, J., Cayla, A., Campagne, C., & Devaux, E. (2020). In Situ Detection of Water Leakage for Textile-Reinforced Composites. Sensors, 20(22), 6641. https://doi.org/10.3390/s20226641