High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation
Abstract
:1. Introduction
2. Temperature Drift Experiment Setup
3. Experimental Data and Processing Methods
4. Results and Discussion
4.1. Data Processing and Analysis
4.1.1. The Temperature Stable Period
4.1.2. The Temperature Rising Period
4.1.3. Analysis of the Combined Data
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prochazka, I.; Blazej, J.; Kodet, J. New technologies for time transfer with picoseconds precision and accuracy. In Proceedings of the 2012 IEEE International Frequency Control Symposium, Baltimore, MD, USA, 21–24 May 2012. [Google Scholar]
- Meng, W.; Zhang, H.; Huang, P.; Wang, J.; Zhang, Z.-P.; Liao, Y.; Ye, Y.; Hu, W.; Wang, Y.; Chen, W.; et al. Design and experiment of onboard laser time transfer in Chinese Beidou navigation satellites. Adv. Space Res. 2013, 51, 951–958. [Google Scholar] [CrossRef]
- Guillemot, P.; Gasc, K.; Petitbon, I.; Samain, E.; Torre, J.M. Time Transfer by Laser Link: The T2L2 experiment on Jason 2. In Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition, Miami, FL, USA, 4–7 June 2006. [Google Scholar]
- Schreiber, U.; Prochazka, I.; Lauber, P.; Hugentobler, U.; Schafer, W.; Cacciapuoti, L.; Nasca, R. The European laser timing (ELT) experiment on-board ACES. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, Besancon, France, 20–24 April 2009. [Google Scholar]
- Cacciapuoti, L.; Schiller, S. European Space Agency I-SOC Scientific Requirements. 2017. Available online: http://www.exphy.uni-duesseldorf.de/PDF/SCI-ESA-HRE-ESR-ISOC_Iss.1.1_Approved.pdf (accessed on 9 June 2017).
- Meng, W.; Zhang, H.; Wu, Z.; Prochazka, I.; Buls, E.; Zhang, Z. The New Project and Plan of Ground-Space Laser Time transfer in China. In Proceedings of the 20th International Workshop on Laser Ranging, Potsdam, Germany, 9–14 October 2016. [Google Scholar]
- Guillemot, P.; Leon-Hirtz, S.; Samain, E.; Exertier, P.; Courde, C.; Laas-Bourez, M.; Martin, N.; Abgrall, M.; Achkar, J.; Roverat, D. T2L2: 6 years in space. In Proceedings of the T2L2/ELT Workshop, Wettzell, Germany, 20 March 2014. [Google Scholar]
- Exertier, P.; Belli, A.; Samain, E.; Meng, W.; Zhang, H.; Tang, K.; Schlicht, A.; Schreiber, U.; Hugentobler, U.; Prochàzka, I. Time and laser ranging: A window of opportunity for geodesy, navigation, and metrology. J. Geod. 2018, 93, 2389–2404. [Google Scholar] [CrossRef]
- Wu, P. China Manned Space Program Its Achievements and Future Developments. In Proceedings of the 59th Session of COPUOS, Vienna, Austria, 23 March–3 April 2016. [Google Scholar]
- Riley, W.J. Handbook of Frequency Stability Analysis; NIST Special Publication 1065; U.S. Department of Commerce: Washington, DC, USA; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007; p. 123.
- Prochazka, I.; Blazej, J.; Flekova, T.; Kodet, J. Silicon Based Photon Counting Detector Providing Femtosecond Detection Delay Stability. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–5. [Google Scholar] [CrossRef]
- Wilkinson, M.; Schreiber, K.U.; Procházka, I.; Moore, C.; Degnan, J.; Kirchner, G.; Zhongping, Z.; Dunn, P.; Shargorodskiy, V.; Sadovnikov, M.; et al. The next generation of satellite laser ranging systems. J. Geod. 2019, 93, 2227–2247. [Google Scholar] [CrossRef]
- Prochazka, I.; Blazej, J.; Kodet, J.; Michalek, V. Active quenching and gating circuit of the photon counting detector for laser time transfer with improved timing resolution and stability. In Proceedings of the Photon Counting Applications, Prague, Czech Republic, 13–16 April 2015. [Google Scholar]
- EvenTech Ltd. Event Timer A033-ET. Available online: http://eventechsite.com/files/A033-ET_datasheet_Eventech_33c656ea.pdf (accessed on 4 September 2019).
- Pánek, P.; Kodet, J.; Procházka, I. Accuracy of two-way time transfer via a single coaxial cable. Metrologia 2013, 50, 60. [Google Scholar] [CrossRef]
- Prochazka, I.; Kodet, J.; Blazej, J. Note: Solid state photon counters with sub-picosecond timing stability. Rev. Sci. Instrum. 2013, 84, 046107. [Google Scholar] [CrossRef] [PubMed]
- Prochazka, I.; Kodet, J.; Blazej, J. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability. Rev. Sci. Instruments 2016, 87, 056102. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, W.; Wang, Y.; Tang, K.; Zhang, Z.; Jin, S.; Procházka, I.; Zhang, Z.; Wu, G. High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation. Sensors 2020, 20, 6655. https://doi.org/10.3390/s20226655
Meng W, Wang Y, Tang K, Zhang Z, Jin S, Procházka I, Zhang Z, Wu G. High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation. Sensors. 2020; 20(22):6655. https://doi.org/10.3390/s20226655
Chicago/Turabian StyleMeng, Wendong, Yurong Wang, Kai Tang, Zhijie Zhang, Shuanggen Jin, Ivan Procházka, Zhongping Zhang, and Guang Wu. 2020. "High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation" Sensors 20, no. 22: 6655. https://doi.org/10.3390/s20226655
APA StyleMeng, W., Wang, Y., Tang, K., Zhang, Z., Jin, S., Procházka, I., Zhang, Z., & Wu, G. (2020). High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation. Sensors, 20(22), 6655. https://doi.org/10.3390/s20226655