A Robust Infrared Transducer of an Ultra-Large-Scale Array
Abstract
:1. Introduction
2. Structure and Principle of MEMS Infrared Thin Film Transducer
2.1. Structure of MEMS Infrared Thin Film Transducers
2.2. Principle of Robust MEMS Infrared Thin Film Transducer
3. Fabrication and Characterization
3.1. Fabrication of the MEMS Infrared Thin Film Transducers
3.2. Characterization of the MEMS Infrared Thin Film Transducer
4. Simulation and Experiments
4.1. Simulation
4.1.1. Simulation Model
4.1.2. Simulation Results
4.2. Experiments
4.2.1. Experimental Setup
4.2.2. Measurement Results
4.2.3. Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, X.; Gao, H.; Guo, M.; Li, G.; Liu, Y.; Li, D. A study on key technologies of unmanned driving. CAAI Trans. Intell. Technol. 2016, 1, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wu, X.; Yu, G.; Xu, Y.; Wang, Y. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery. Sensors 2016, 16, 446. [Google Scholar] [CrossRef] [Green Version]
- Bao, A.; Lei, C.; Mao, H.; Li, R.; Guan, Y. Study on a High Performance MEMS Infrared Thermopile Detector. Micromachines 2019, 10, 877. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Wang, Y.; Xiong, B.; Li, T. MEMS-based thermoelectric infrared sensors: A review. Front. Mech. Eng. 2017, 12, 557–566. [Google Scholar] [CrossRef]
- Lin, P.-S.; Shen, T.-W.; Chan, K.-C.; Fang, W. CMOS MEMS Thermoelectric Infrared Sensor with Plasmonic Metamaterial Absorber for Selective Wavelength Absorption and Responsivity Enhancement. IEEE Sens. J. 2020, 20, 11105–11114. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chen, B. Research on a CMOS-MEMS Infrared Sensor with Reduced Graphene Oxide. Sensors 2020, 20, 4007. [Google Scholar] [CrossRef]
- Alves, F.; Pimental, L.; Grbovic, D.; Karunasiri, G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci. Rep. 2018, 8, 12466. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, M.Y.; Chae, Y.S. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications. Sensors 2017, 18, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Wang, X.; Li, Y.; Zhou, L.; Shi, Q.; Li, Z. Modeling method of a ladar scene projector based on physically based rendering technology. Appl. Opt. 2018, 57, 8303–8313. [Google Scholar] [CrossRef] [PubMed]
- Gibin, I.S.; Kozik, V.I.; Nezhevenko, E.S. Generation of dynamic scenes for testing infrared imaging systems in the far infrared range. Optoelectron. Instrum. Data Process. 2018, 54, 7–12. [Google Scholar] [CrossRef]
- D’Acremont, A.; Fablet, R.; Baussard, A.; Quin, G. CNN-Based Target Recognition and Identification for Infrared Imaging in Defense Systems. Sensors 2019, 19, 2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.R.; Sydney, P.; Lee, M.M.; Norton, D.T.; Boggess, T.F. 512 × 512 array of dual-color InAs/GaSb superlattice light-emitting diodes. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, San Francisco, CA, USA, 30 January–1 February 2017; p. 10124. [Google Scholar]
- Ouyang, B.; Hou, W.; Caimi, F.M.; Dalgleish, F.R.; Vuorenkoski, A.K.; Gong, S.; Britton, W. Near-infrared compressive line sensing imaging system using individually addressable laser diode array. In Proceedings of the SPIE—The International Society for Optical Engineering, Baltimore, MD, USA, 22–23 April 2015; p. 9484. [Google Scholar]
- Sparkman, K.; Laveigne, J.; Mchugh, S.; Lannon, J.; Goodwin, S. Ultrahigh-temperature emitter pixel development for scene projectors. In Proceedings of the Infrared Imaging Systems: Design, Analysis, Modeling, & Testing XXV, Baltimore, MD, USA, 9 June 2014; p. 9071. [Google Scholar]
- Mchugh, S.; Franks, G.; Laveigne, J. High-temperature MIRAGE XL (LFRA) IRSP system development. In Proceedings of the Infrared Imaging Systems: Design, Analysis, Modeling, & Testing XXVIII, Anaheim, CA, USA, 3 May 2017; p. 1017809. [Google Scholar]
- Danielson, T.; Franks, G.; Holmes, N.; LaVeigne, J.; Matis, G.; McHugh, S.; Norton, D.; Vengel, T.; Lannon, J.; Goodwin, S. Achieving ultra-high temperatures with a resistive emitter array. In Proceedings of the Conference on Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, Baltimore, MD, USA, 4 April 2016; pp. 98200Z.1–98200Z.9. [Google Scholar]
- Zhou, L.; Li, Z.; Li, D.; Xu, C.; Gao, Y.; Zhang, J.; Wang, X.; Yang, S.; Wang, K. Large scale array visible-Infrared converter based on free-standing flexible composite microstructures. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 2527–2530. [Google Scholar]
- Zhou, L.; Wang, X.; Yang, S.; Zhang, J.; Gao, Y.; Xu, C.; Li, D.; Shi, Q.; Li, Z. A self-suspended MEMS film convertor for dual-band infrared scene projection. Infrared Phys. Technol. 2020, 105, 103231. [Google Scholar] [CrossRef]
- Xu, C.; Liu, D.; Zhou, L.; Shi, Q.; Gao, Y.; Wang, X.; Li, Z. Thermodynamics characteristics of MEMS infrared thin film. Opt. Express 2019, 27, 32779–32788. [Google Scholar] [CrossRef] [PubMed]
- Beasley, D.B.; Bender, M.; Crosby, J.; Messer, T. Dynamic infrared scene projectors based upon the DMD. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 2–6 August 2009; p. 7210. [Google Scholar]
- Dupuis, J.R.; Mansur, D.J.; Vaillancourt, R.; Benedict-Gill, R.; Newbry, S. High Dynamic Range DMD-Based IR Scene Projector. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications V, San Francisco, CA, USA, 8 March 2013; p. 86180R. [Google Scholar]
- Marinova, V.; Chi, C.H.; Tong, Z.F.; Liu, R.C.; Berberova, N.; Lin, S.H.; Lin, Y.H.; Stoykova, E.; Hsu, K.Y. Liquid crystal light valve operating at near infrared spectral range. Opt. Quantum Electron. 2016, 48, 1–6. [Google Scholar] [CrossRef]
- Kim, C.-H.; Kim, Y.-K. MEMS variable optical attenuator using a translation motion of 45 and deg; tilted vertical mirror. J. Micromechan. Microeng. 2005, 15, 1466–1475. [Google Scholar] [CrossRef]
- Ejzak, G.A.; Dickason, J.; Marks, J.A.; Nabha, K.; McGee, R.T.; Waite, N.A.; Benedict, J.T.; Hernandez, M.A.; Provence, S.R.; Norton, D.T.; et al. 512 × 512, 100 Hz Mid-Wave Infrared LED Microdisplay System. J. Disp. Technol. 2016, 12, 1139–1144. [Google Scholar] [CrossRef]
- Asobe, M.; Yanagawa, T.; Tadanaga, O.; Umeki, T.; Suzuki, H. Multi-Wavelength Mid-Infrared Light Source Using Multi-Quasi-Phase-Matched LiNbO3 Waveguide and Tunable Laser Diode Array. In Nonlinear Photonics; Optical Society of America: Washington, DC, USA, 2007. [Google Scholar]
- Luo, Y.; Gao, J.; Gao, F. Infrared liquid crystal light valve based on polymer/liquid crystal. In Proceedings of the SPIE—The International Society for Optical Engineering, Beijing, China, 24 March 2009; p. 7383. [Google Scholar]
- Zhao, Z.; Ho, C.P.; Li, Q.; Lin, Z.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Efficient Mid-Infrared Germanium Variable Optical Attenuator Fabricated by Spin-on-Glass Doping. J. Light. Technol. 2020, 38, 4808–4816. [Google Scholar] [CrossRef]
- Lv, X.D.; Wei, W.W.; Mao, X.; Yang, J.L.; Yang, F.H. A linear low driving voltage MEMS actuator with large lateral stroke driven by lorentz force. In Proceedings of the TRANSDUCERS 2015—18th International Solid-State Sensors, Actuators and Microsystems Conference, Anchorage, AK, USA, 21–25 June 2015. [Google Scholar]
- Lv, X.; Wei, W.; Mao, X.; Chen, Y.; Yang, J.; Yang, F. A novel MEMS electromagnetic actuator with large displacement. Sens. Actuators A Phys. 2015, 221, 22–28. [Google Scholar] [CrossRef]
- Lv, X.; Wei, W.; Mao, X.; Yang, J.; Yang, F. A novel MEMS actuator with large lateral stroke driven by Lorentz force. J. Micromechan. Microeng. 2015, 25, 25009. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, J.; Wang, J.; Sun, Q. Diffraction analysis for DMD-based scene projectors in the long-wave infrared. Appl. Opt. 2016, 55, 8016–8021. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X. DMD Mask Construction to Suppress Blocky Structural Artifacts for Medium Wave Infrared Focal Plane Array-Based Compressive Imaging. Sensors 2020, 20, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaufelbuhl, A.; Schneeberger, N.; Munch, U.; Waelti, M.; Paul, O.; Brand, O.; Baltes, H.; Menolfi, C.; Huang, Q.; Doering, E.; et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. J. Microelectromechan. Syst. 2001, 10, 503–510. [Google Scholar] [CrossRef]
- Fonollosa, J.; Carmona, M.; Santander, J.; Fonseca, L.; Moreno, M.; Marco, S. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sens. Actuators A Phys. 2009, 149, 65–73. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Z.; Zhang, J.; Li, D.; Liu, D.; Li, Y.; Wang, X. Thin layer broadband porous chromium black absorber fabricated through wet-etching process. RSC Adv. 2019, 9, 14649–14656. [Google Scholar] [CrossRef] [Green Version]
- Nelms, N.; Dowson, J. Goldblack coating for thermal infrared detectors. Sens. Actuators A Phys. 2005, 120, 403–407. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Zhang, J.; Yang, S.; Hao, K.; Gao, Y.; Li, D.; Li, Z. Self-suspended carbon nanotube/polyimide composite film with improved photothermal properties. J. Appl. Phys. 2020, 127, 205103. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Li, Z.; Yang, S.; Zhang, J.; Zhao, Q. Performance improvement of an infrared scene generation chip by in-plane microstructures. Opt. Express 2020, 28, 26807–26822. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Li, Z.; Yang, S.; Zhang, J. Measurement of the thermophysical properties of self-suspended thin films based on steady-state thermography. Opt. Express 2020, 28, 14560–14572. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006; pp. 2–6. [Google Scholar]
- Zhang, Z.M. Nano/Microscale Heat Transfer, 1st ed.; McGraw-Hill Professional: New York, NY, USA, 2007; pp. 34–43. [Google Scholar]
- Zhou, L. MEMS Infrared Image Conversion Film. Ph.D. Thesis, Beijing Institute of Technology, Beijing, China, 2020. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 90th ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ghodssi, R.; Lin, P.Y. MEMS Materials and Processes Handbook, 1st ed.; Springer: New York, NY, USA, 2011; pp. 178–209. [Google Scholar]
Parameter | DMD | Resistor Array | MEMS Infrared Thin Film Transducer |
---|---|---|---|
Radiation wavelength range (µm) | mid and longwave infrared bands (poor in longwave infrared band) | mid and longwave infrared bands | mid and longwave infrared bands |
Array size | 1280 × 1024 | 1024 × 1024 | 1313 × 1313 |
Pixel size (µm) | 13 | 48 | 35 |
Frame rate | 690 Hz | 200 Hz | 50 Hz |
Read in circuit | complicated | complicated | no need |
Reference | [20,21,31,32] | [14,15,16] | [17,18,19] |
Parameter | Si | PI | Metal |
---|---|---|---|
Thickness (µm) | 6 | 0.4 | 10 |
Density () | 2329 | 1350 | 350 |
Constant pressure heat capacity () | 700 | 650 | 127 |
Thermal conductivity () | 130 | 0.2 | K * |
Parameter | Traditional Soft MEMS Infrared Thin Film Transducer | Proposed Robust MEMS Infrared Thin Film Transducer | Robust MEMS Infrared Thin Film Transducer without Micro Cavities |
---|---|---|---|
Radiation intensity (W/m2) | 4100 (first cycle) | 1628 | 1140 |
Maximum temperature (K) | 560 (first cycle) | 450 | 426 |
Thermal decay time (ms) | >10 | 6 | 2.5 |
Heat accumulation | poor | good | good |
Comprehensive assessment | The radiation and temperature characteristics were good but the frame rate was poor | The radiation and temperature characteristics were medium and the frame rate was medium | The radiation and temperature characteristics were poor but the frame rate was good |
Parameter | Traditional Soft MEMS Infrared Thin Film Transducer | Robust Infrared Thin Film Transducer |
---|---|---|
Array size | 1313 × 1313 | more than 2000 × 2000 |
Time constant (ms) | 3.55 | 1.75 |
50 Hz frame rate | medium | good |
FWHM (μm) | 620 | 470 |
Radiation intensity and temperature difference | high | medium |
Mechanical stability | poor | good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhang, J.; Shi, Q.; Yuan, X.; Li, Z.; Wang, X.; Yang, S.; Hao, Y. A Robust Infrared Transducer of an Ultra-Large-Scale Array. Sensors 2020, 20, 6807. https://doi.org/10.3390/s20236807
Li D, Zhang J, Shi Q, Yuan X, Li Z, Wang X, Yang S, Hao Y. A Robust Infrared Transducer of an Ultra-Large-Scale Array. Sensors. 2020; 20(23):6807. https://doi.org/10.3390/s20236807
Chicago/Turabian StyleLi, Defang, Jinying Zhang, Qingfeng Shi, Xichen Yuan, Zhuo Li, Xin Wang, Suhui Yang, and Yan Hao. 2020. "A Robust Infrared Transducer of an Ultra-Large-Scale Array" Sensors 20, no. 23: 6807. https://doi.org/10.3390/s20236807
APA StyleLi, D., Zhang, J., Shi, Q., Yuan, X., Li, Z., Wang, X., Yang, S., & Hao, Y. (2020). A Robust Infrared Transducer of an Ultra-Large-Scale Array. Sensors, 20(23), 6807. https://doi.org/10.3390/s20236807