Autonomous Corrosion Assessment of Reinforced Concrete Structures: Feasibility Study
Abstract
:1. Introduction
2. State-of-the-Art Chloride and pH Sensors
2.1. Potentiometric Sensors
2.1.1. Potentiometric Chloride Ion Sensors
2.1.2. Potentiometric pH Sensors
2.1.3. Potentiometric Integrated Chloride Ion and pH Sensors
2.2. Fiber-Optic Sensors
2.2.1. Fiber-Optic Chloride Ion Sensors
2.2.2. Fiber-Optic pH Sensors
2.3. Comparison between Potentiometric and Fiber-Optic Sensors
3. Internet of Things Based Corrosion Monitoring
4. Evolution of Data-Driven Corrosion Assessment
5. Conclusions
Funding
Conflicts of Interest
References
- World Bank. Gross Domestic Product 2016; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Hoult, N.; Bennett, P.J.; Stoianov, I.; Fidler, P.; Maksimović, Č.; Middleton, C.; Graham, N.; Soga, K. Wireless sensor networks: Creating “smart infrastructure”. Proc. Inst. Civ. Eng. Civ. Eng. 2009, 162, 136–143. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K.T.V.; Taylor, S.E.; Basheer, P.A.M.; Long, A.E. yFibre optic pH sensor for Corrosion Monitoring in Concrete Structures. In Proceedings of the 14th International Meeting on Chemical Sensors—IMCS 2012, Nuremberg, Germany, 20–23 May 2012; pp. 1493–1496. [Google Scholar]
- ASCE. 2017 Infrastructure Report Card: A Comprehensive Assessment of America’s Infrastructure; ASCE: Reston, VA, USA, 2017. [Google Scholar]
- Yu, B.; Yang, L.; Wu, M.; Li, B. Practical model for predicting corrosion rate of steel reinforcement in concrete structures. Constr. Build. Mater. 2014, 54, 385–401. [Google Scholar] [CrossRef]
- El-Reedy, M. Steel-Reinforced Concrete Structures: Assessment and Repair of Corrosion; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. Mater. Civ. Eng. 2015, 27, 04014245. [Google Scholar] [CrossRef]
- Singh, R. Corrosion Control for Offshore Structures: Cathodic Protection and High-Efficiency Coating, 1st ed.; Gulf Professional Publishing: Oxford, UK, 2014; ISBN 9780124046153. [Google Scholar]
- Matthews, S.L.; Morlidge, J.R. Performance based rehabilitation of reinforced concrete structures. In Concrete Repair, Rehabilitation and Retrofitting II: 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-2; Alexander, M.G., Beushausen, H.-D., Dehn, F., Moyo, P., Eds.; CRC Press: Leiden, The Netherlands, 2008; pp. 277–278. [Google Scholar]
- Vaysburd, A.M.; Emmons, P.H.; Bissonnette, B. Concrete repair: Research and practice—The critical dimension. In Concrete Repair, Rehabilitation and Retrofitting II: 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-2; Alexander, M.G., Beushausen, H.-D., Dehn, F., Moyo, P., Eds.; CRC Press: Leiden, The Netherlands, 2008; pp. 275–276. [Google Scholar]
- Taffese, W.Z.; Sistonen, E. Service life prediction of repaired structures using concrete recasting method: State-of-the-art. Procedia Eng. 2013, 57, 1138–1144. [Google Scholar] [CrossRef]
- Song, D.; Yang, F.; Guo, M.; Zhao, S.; Hao, J.; Chen, Z.; Sun, J.; Xu, Y.; Jiang, J. Surface modification of rusted rebar and enhanced passivation/anticorrosion performance in simulated concrete pore solutions with different alkalinity. Metals 2019, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Neville, A.M.; Brooks, J.J. Concrete Technology, 2nd ed.; Prentice Hall: Harlow, UK, 2010; ISBN 978-0-273-73219-8. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- fib (International Federation for Structural Concrete). Structural Concrete: Textbook on Behaviour, Design and Performance; fib: Lausanne, Switzerland, 2009; Volume 1. [Google Scholar]
- Lagerblad, B. Carbon Dioxide Uptake during Concrete Life Cycle–State of the Art; CBI: Stockholm, Sweden, 2005. [Google Scholar]
- Huang, Q.; Jiang, Z.; Zhang, W.; Gu, X.; Dou, X. Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation. Constr. Build. Mater. 2012, 37, 27–35. [Google Scholar] [CrossRef]
- Ann, K.Y.; Pack, S.W.; Hwang, J.P.; Song, H.W.; Kim, S.H. Service life prediction of a concrete bridge structure subjected to carbonation. Constr. Build. Mater. 2010, 24, 1494–1501. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Lee, H.-S. A model for predicting the carbonation depth of concrete containing low-calcium fly ash. Constr. Build. Mater. 2009, 23, 725–733. [Google Scholar] [CrossRef]
- Tang, L.; Nilsson, L.-O.; Basheer, P.A.M. Resistance of Concrete to Chloride Ingress: Testing and Modelling; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Nguyen, T.S.; Lorente, S.; Carcasses, M. Effect of the environment temperature on the chloride diffusion through CEM-I and CEM-V mortars: An experimental study. Constr. Build. Mater. 2009, 23, 795–803. [Google Scholar] [CrossRef]
- Ye, H.; Jin, X.; Fu, C.; Jin, N.; Xu, Y.; Huang, T. Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation. Constr. Build. Mater. 2016, 112, 457–463. [Google Scholar] [CrossRef]
- Zhu, X.; Zi, G.; Cao, Z.; Cheng, X. Combined effect of carbonation and chloride ingress in concrete. Constr. Build. Mater. 2016, 110, 369–380. [Google Scholar] [CrossRef]
- Torres-Luque, M.; Bastidas-Arteaga, E.; Schoefs, F.; Sánchez-Silva, M.; Osma, J.F. Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges. Constr. Build. Mater. 2014, 68, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Cement and concrete research critical chloride content in reinforced concrete—A review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar] [CrossRef]
- Ahlström, J.; Tidblad, J.; Sederholm, B.; Wadsö, L. Influence of chloride and moisture content on steel rebar corrosion in concrete. Mater. Corros. 2016, 67, 1049–1058. [Google Scholar] [CrossRef]
- Elsener, B.; Zimmermann, L.; Böhni, H. Non destructive determination of the free chloride content in cement based materials. Mater. Corros. 2003, 54, 440–446. [Google Scholar] [CrossRef]
- McCarter, W.; Chrisp, T.; Starrs, G.; Adamson, A.; Owens, E.; Basheer, P.; Nanukuttan, S.; Srinivasan, S.; Holmes, N. Developments in performance monitoring of concrete exposed to extreme environments. Infrastruct. Syst. 2012, 18, 167–175. [Google Scholar] [CrossRef] [Green Version]
- McCarter, W.; Chrisp, T.; Starrs, G.; Holmes, N.; Basheer, L.; Basheer, M.; Nanukuttan, S. Developments in monitoring techniques for durability assessment of cover-zone concrete. In Proceedings of the 2nd International Conference on Durability of Concrete Structures; Hokkaido University Press: Sapporo, Japan, 2010; pp. 137–146. [Google Scholar]
- Taffese, W.Z. Data-driven method for enhanced corrosion assessment of reinforced concrete structures. arXiv 2020, arXiv:2007.01164. [Google Scholar]
- Dansk Standard. Repair of Concrete Structures to EN 1504; Elsevier Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Potentiometric determination of the chloride ion activity in cement based materials. J. Appl. Electrochem. 2010, 40, 561–573. [Google Scholar] [CrossRef]
- Bagheri, S.; Amiri, I.S.; Yousefi, A.T.; Hamid, S.B.A. Nanocomposites in Electrochemical Sensors; CRC Press/Balkema: EH Leiden, The Netherlands, 2017; ISBN 978-1-315-21335-4. [Google Scholar]
- Vennesland, Ø.; Raupach, M.; Andrade, C. Recommendation of Rilem TC 154-EMC: “Electrochemical techniques for measuring corrosion in concrete”—Measurements with embedded probes. Mater. Struct. 2007, 40, 745–758. [Google Scholar] [CrossRef]
- McCarter, W.J.; Vennesland, Ø. Sensor systems for use in reinforced concrete structures. Constr. Build. Mater. 2004, 18, 351–358. [Google Scholar] [CrossRef]
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- De Brito, P.S.D.; Cunha, P.T.; Ferreira, M.G.S. Solid potential reference electrode for concrete corrosion monitoring. Sensors Mater. 2013, 25, 285–296. [Google Scholar]
- Montemor, M.F.; Alves, J.H.; Simões, A.M.; Fernandes, J.C.S.; Lourenço, Z.; Costa, A.J.S.; Appleton, A.J.; Ferreira, M.G.S. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cem. Concr. Compos. 2006, 28, 233–236. [Google Scholar] [CrossRef]
- Zhou, S.; Sheng, W.; Deng, F.; Wu, X.; Fu, Z. A novel passive wireless sensing method for concrete chloride ion concentration monitoring. Sensors 2017, 17, 2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffó, G.S.; Farina, S.B. Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures. Constr. Build. Mater. 2009, 23, 2746–2751. [Google Scholar] [CrossRef]
- Pargar, F.; Koleva, D.A.; Copuroglu, O.; Koenders, E.A.B.; van Breugel, K. Evaluation of Ag/AgCl sensors for in-situ monitoring of freee chloride concentration in reinforced concrete structures. In Young Researchers’ Forum II: Construction Materials; Mangabhai, R.J., Bai, Y., Goodier, C.I., Eds.; University College London: London, UK, 2014; pp. 153–158. [Google Scholar]
- Gandía-Romero, J.M.; Bataller, R.; Monzón, P.; Campos, I.; García-Breijo, E.; Valcuende, M.; Soto, J. Characterization of embeddable potentiometric thick-film sensors for monitoring chloride penetration in concrete. Sens. Actuators B Chem. 2016, 222, 407–418. [Google Scholar] [CrossRef]
- Jin, M.; Jiang, L.; Zhu, Q. Monitoring chloride ion penetration in concrete with different mineral admixtures based on embedded chloride ion selective electrodes. Constr. Build. Mater. 2017, 143, 1–15. [Google Scholar] [CrossRef]
- Femenias, Y.S.; Angst, U.; Caruso, F.; Elsener, B. Ag/AgCl ion-selective electrodes in neutral and alkaline environments containing interfering ions. Mater. Struct. 2016, 49, 2637–2651. [Google Scholar] [CrossRef] [Green Version]
- Karthick, S.; Kwon, S.-J.; Lee, H.S.; Muralidharan, S.; Saraswathy, V.; Natarajan, R. Fabrication and evaluation of a highly durable and reliable chloride monitoring sensor for civil infrastructure. RSC Adv. 2017, 7, 31252–31263. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, J.; Yang, Y.; Deng, H. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions. Sensors 2010, 10, 10226–10239. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.J.; Zhang, J.; Yang, Y.Z.; Lu, S. Preparation of Chloride Ion Selective Electrode and its Potential Response to Different Chloride Solutions Representing Concrete Environments. Mater. Sci. Forum 2011, 675–677, 537–540. [Google Scholar] [CrossRef]
- Abbas, Y.; Have, B.; Hoekstra, G.I.; Douma, A.; de Bruijn, D.; Olthuis, W.; van den Berg, A. Connecting to concrete: Wireless monitoring of chloride ions in concrete structures. Procedia Eng. 2015, 120, 965–968. [Google Scholar] [CrossRef] [Green Version]
- Femenias, Y.S.; Angst, U.; Elsener, B. pH-monitoring in mortar with thermally-oxidized iridium electrodes. RILEM Tech. Lett. 2017, 2, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Femenias, Y.S.; Angst, U.; Elsener, B. Monitoring pH in corrosion engineering by means of thermally produced iridium oxide electrodes. Mater. Corros. 2017, 69, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Kolar, M.; Doliška, A.; Švegl, F.; Kalcher, K. Tungsten—Tungsten Trioxide Electrodes for the Long-term Monitoring of Corrosion Processes in Highly Alkaline Media and Concrete-based Materials. Acta Chim. Slov. 2010, 57, 813–820. [Google Scholar] [PubMed]
- Gandía-Romero, J.M.; Campos, I.; Valcuende, M.; García-Breijo, E.; Marcos, M.D.; Payá, J.; Soto, J. Potentiometric thick-film sensors for measuring the pH of concrete. Cem. Concr. Compos. 2016, 68, 66–76. [Google Scholar] [CrossRef]
- Bhadra, S.; Tan, D.S.Y.; Thomson, D.J.; Freund, M.S.; Bridges, G.E. A Wireless Passive Sensor for Temperature Compensated Remote pH Monitoring. IEEE Sens. J. 2013, 13, 2428–2436. [Google Scholar] [CrossRef]
- Du, R.-G.; Hu, R.-G.; Huang, R.-S.; Lin, C.-J. In situ measurement of Cl− concentrations and pH at the reinforcing steel/concrete interface by combination sensors. Anal. Chem. 2006, 78, 3179–3185. [Google Scholar] [CrossRef]
- Yu, H.; Caseres, L. An embedded multi-parameter corrosion sensor for reinforced concrete structures. Mater. Corros. 2012, 63, 1011–1016. [Google Scholar] [CrossRef]
- Dong, S.-G.; Lin, C.-J.; Hu, R.-G.; Li, L.-Q.; Du, R.-G. Effective monitoring of corrosion in reinforcing steel in concrete constructions by a multifunctional sensor. Electrochim. Acta 2011, 56, 1881–1888. [Google Scholar] [CrossRef]
- Norris, J.O.W. Optical fiber chemical sensors: Fundamentals and applications. In Optical Fiber Sensor Technology; Grattan, K.T., Meggitt, B.T., Eds.; Springer: Boston, MA, USA, 2000; pp. 337–378. [Google Scholar]
- Krohn, D.; MacDougall, T.; Mendez, A. Fiber Optic Sensors: Fundamentals and Applications; SPIE: Bellingham, WA, USA, 2014; ISBN 978-1-6284-1180-5. [Google Scholar]
- Ding, L.; Li, Z.; Ding, Q.; Shen, X.; Yuan, Y.; Huang, J. Microstructured optical fiber based chloride ion sensing method for concrete health monitoring. Sens. Actuators B Chem. 2018, 260, 763–769. [Google Scholar] [CrossRef]
- Laferrière, F.; Inaudi, D.; Kronenberg, P.; Smith, I.F.C. A new system for early chloride detection in concrete. Smart Mater. Struct. 2008, 17, 1–8. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K.T.V.; Taylor, S.E.; Basheer, P.A.M.; Long, A.E. Fluorescence based fibre optic pH sensor for the pH 10–13 range suitable for corrosion monitoring in concrete structures. Sens. Actuators B Chem. 2014, 191, 498–507. [Google Scholar] [CrossRef]
- McPolin, D.O.; Basheer, P.A.M.; Long, A.E.; Xie, W.; Sun, T.; Grattan, K.T.V. Development and Longer Term In Situ Evaluation of Fiber-Optic Sensors for Monitoring of Structural Concrete. IEEE Sens. J. 2009, 9, 1537–1545. [Google Scholar] [CrossRef]
- Khan, F.U.; Ahmad, I. Review of energy harvesters utilizing bridge vibrations. Shock Vib. 2016, 2016, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, S.R.; Gia, T.N.; Nigussie, E.; Rahmani, A.M.; Virtanen, S.; Tenhunen, H.; Isoaho, J. End-to-end security scheme for mobility enabled healthcare Internet of Things. Future Gener. Comput. Syst. 2016, 64, 108–124. [Google Scholar] [CrossRef]
- Nigussie, E.; Xu, T.; Potkonjak, M. Securing wireless body sensor networks using bijective function-based hardware primitive. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP); IEEE: Singapore, 2015; pp. 1–6. [Google Scholar]
- Moosavi, S.R.; Nigussie, E.; Levorato, M.; Virtanen, S.; Isoaho, J. Performance analysis of end-to-end security schemes in healthcare IoT. Procedia Comput. Sci. 2018, 130, 432–439. [Google Scholar] [CrossRef]
- Niu, Z.; Chen, J.; Xu, L.; Yin, L.; Zhang, F. Application of the Environmental Internet of Things on monitoring PM2.5 at a coastal site in the urbanizing region of southeast China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 231–237. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Quan, Y.; Dong, R. Research on the framework of the Environmental Internet of Things. Int. J. Sustain. Dev. World Ecol. 2013, 20, 199–204. [Google Scholar] [CrossRef]
- Su, X.; Shao, G.; Vause, J.; Tang, L. An integrated system for urban environmental monitoring and management based on the Environmental Internet of Things. Int. J. Sustain. Dev. World Ecol. 2013, 20, 205–209. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 2327–4662. [Google Scholar] [CrossRef]
- Kim, T.; Ramos, C.; Mohammed, S. Smart City and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Saeed, F.; Paul, A.; Rehman, A.; Hong, W.H.; Seo, H. IoT-based intelligent modeling of smart home environment for fire prevention and safety. J. Sens. Actuator Netw. 2018, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fu, Y.; Yang, X. An integrated system for building structural health monitoring and early warning based on an Internet of things approach. Int. J. Distrib. Sens. Netw. 2017, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abdelgawad, A.; Yelamarthi, K. Internet of things (IoT) platform for structure health monitoring. Wirel. Commun. Mob. Comput. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Barsocchi, P.; Cassara, P.; Mavilia, F.; Pellegrini, D. Sensing a city’s state of health: Structural monitoring system by internet-of-things wireless sensing devices. IEEE Consum. Electron. Mag. 2018, 7, 22–31. [Google Scholar] [CrossRef]
- Kuzminykh, I. Testing of communication range in ZigBee technology. In Proceedings of the 14th International Conference on The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM); IEEE: Polyana, Ukraine, 2017; pp. 133–136. [Google Scholar]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Xia, Y.; Yuan, R. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement. J. Sens. 2018, 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Qiao, G.; Sun, G.; Hong, Y.; Liu, T.; Guan, X. Corrosion in reinforced concrete panels: Wireless monitoring and wavelet-based analysis. Sensors 2014, 14, 3395–3407. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Yang, G.; Guo, B. CoCoMo: Toward controllable and reliable corrosion monitoring with a wireless sensor network. Int. J. Distrib. Sens. Netw. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Xu, S.; Yu, J.; Niu, D.; Dong, Z.; Gao, P. Research on wireless remote monitoring system of the durability for large concrete structures. Adv. Mater. Res. 2012, 368–373, 2194–2199. [Google Scholar] [CrossRef]
- Erokhina, O.V.; Brega, A. V Intelligent transport technologies in “smart” cities. In Proceedings of the 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 19–20 March 2020; pp. 1–5. [Google Scholar]
- Mishra, L.; Vikash; Varma, S. Internet of things for military applications. In Proceedings of the 7th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 12–14 March 2020; pp. 118–123. [Google Scholar]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT technology in agriculture: A systematic literature review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, E.; Olwal, T.; Musumb, G.; Tegegne, T.; Lemma, A.; Mekuria, F. IoT-based irrigation management for smallholder farmers in rural sub-Saharan Africa. Procedia Comput. Sci. 2020, 117, 86–93. [Google Scholar] [CrossRef]
- Bekkerman, R.; Bilenko, M.; Langford, J. Scaling up machine learning: Introduction. In Scaling up Machine Learning: Parallel and Distributed Approaches; Bekkerman, R., Bilenko, M., Langford, J., Eds.; Cambridge University Press: New York, NY, USA, 2012; pp. 1–22. ISBN 978-0-521-19224-8. [Google Scholar]
- Cherkassky, V.; Mulier, F. Learning from Data: Concepts, Theory, and Methods, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 978-0-471-68182-3. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Morgan Kaufmann: Waltham, MA, USA, 2012; ISBN 9781558609013. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2011; ISBN 978-0-12-374856-0. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-01243-0. [Google Scholar]
- Reich, Y. Machine learning techniques for civil engineering problems. Microcomput. Civ. Eng. 1997, 12, 295–310. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Lee, L.S.-W. Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems. In Structural Health Monitoring of Civil Infrastructure Systems; Karbhari, V.M., Ansari, F., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 177–212. ISBN 978-1-84569-682-5. [Google Scholar]
- Mitchell, T. Machine Learning; McGraw Hill: Boston, MA, USA, 1997. [Google Scholar]
- Kanevski, M.; Timonin, V.; Pozdnukhov, A. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software; EPFL Press: Lausanne, Switzerland, 2009; ISBN 978-2-940222-24-7. [Google Scholar]
- Marsland, S. Machine Learning: An Algorithmic Perspective; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-6718-7. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; ISBN 978-0-262-01802-9. [Google Scholar]
- Harris, T. Credit scoring using the clustered support vector machine. Expert Syst. Appl. 2015, 42, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A.; Kanamori, T. Using financial risk measures for analyzing generalization performance of machine learning models. Neural Netw. 2014, 57, 29–38. [Google Scholar] [CrossRef]
- Kim, M.J.; Kang, D.K. Ensemble with neural networks for bankruptcy prediction. Expert Syst. Appl. 2010, 37, 3373–3379. [Google Scholar] [CrossRef]
- Di, K.; Li, W.; Yue, Z.; Sun, Y.; Liu, Y. A machine learning approach to crater detection from topographic data. Adv. Sp. Res. 2014, 54, 2419–2429. [Google Scholar] [CrossRef]
- Dede, G.; Sazlı, M.H. Speech recognition with artificial neural networks. Digit. Signal Process. 2010, 20, 763–768. [Google Scholar] [CrossRef]
- Hsieh, W.W. Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-79192-2. [Google Scholar]
- Taffese, W.Z. Case-based reasoning and neural networks for real estate valuation. In Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications; Devedžic, V., Ed.; ACTA Press: Anaheim, CA, USA, 2007; pp. 84–89. [Google Scholar]
- Park, B.; Bae, J.K. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Syst. Appl. 2015, 42, 2928–2934. [Google Scholar] [CrossRef]
- Taffese, W.Z. A survey on application of artificial intelligence in real estate industry. In Proceedings of the Third International Conference on Artificial Intelligence in Engineering & Technology; Hamid, M.Y., Chekima, A., Sainarayanan, G., Prabhakaran, N., Anthony, P., Wong, F., Dargham, J.A., Wei, J.T.T., Kin, K.T.T., Eds.; Universiti Malaysia Sabah: Kota Kinabalu, Malaysia, 2006; pp. 710–715. [Google Scholar]
- Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 2015, 20, 318–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lam, K.-M.; Deng, Z.; Choi, K.-S. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 2015, 63, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Che, D.; Liu, Q.; Rasheed, K.; Tao, X. Decision tree and ensemble learning algorithms with their applications in bioinformatics. In Software Tools and Algorithms for Biological Systems; Arabnia, H.R., Tran, Q.-N., Eds.; Springer: New York, NY, USA, 2011; Volume 696, pp. 191–199. ISBN 978-1-4419-7046-6. [Google Scholar]
- Vaughan, A.; Bohac, S.V. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series. Neural Netw. 2015, 70, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, S.; Nebot, À.; Mugica, F.; Avellan, N. Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques. Energy 2015, 86, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Kialashaki, A.; Reisel, J.R. Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States. Energy 2014, 76, 749–760. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Taffese, W.Z.; Nigussie, E.; Isoaho, J. Internet of things based durability monitoring and assessment of reinforced concrete structures. Procedia Comput. Sci. 2019, 155, 672–679. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Al-Neshawy, F.; Sistonen, E.; Ferreira, M. Optimized neural network based carbonation prediction model. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDTCE 2015), Berlin, Germany, 15–17 September 2015; pp. 1074–1083. [Google Scholar]
- Taffese, W.Z.; Sistonen, E.; Puttonen, J. Prediction of concrete carbonation depth using decision trees. In Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computer Intelligence Machine Learning; Ciaco—i6doc.com: Louvain-la-Neuve, Belgium, 2015. [Google Scholar]
- Taffese, W.Z.; Sistonen, E.; Puttonen, J. CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods. Constr. Build. Mater. 2015, 100, 70–82. [Google Scholar] [CrossRef]
- Kellouche, Y.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network. Neural Comput. Appl. 2019, 31, 969–988. [Google Scholar] [CrossRef]
- Lu, C.; Liu, R. Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv. Artif. Neural Syst. 2009, 2009, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.-C.; Ju, H.; Oh, J.-Y.; Lee, K.J.; Hahm, K.W.; Kim, K.S. Estimation of concrete carbonation depth considering multiple influencing factors on the deterioration of durability for reinforced concrete structures. Adv. Mater. Sci. Eng. 2016, 2016, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Niu, D.; Dong, Z. Application of neural network for concrete carbonation depth prediction. In Proceedings of the 4th International Conference on the Durability of Concrete Structures; Olek, J., Weiss, J., Eds.; Purdue University Press: West Lafayette, IN, USA, 2014; pp. 66–71. [Google Scholar]
- Ghafoori, N.; Najimi, M.; Sobhani, J.; Aqel, M.A. Predicting rapid chloride permeability of self-consolidating concrete: A comparative study on statistical and neural network models. Constr. Build. Mater. 2013, 44, 381–390. [Google Scholar] [CrossRef]
- Gilan, S.S.; Jovein, H.B.; Ramezanianpour, A.A. Hybrid support vector regression—Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin. Constr. Build. Mater. 2012, 34, 321–329. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Ma, B. Neural network analysis of chloride diffusion in concrete. J. Mater. Civ. Eng. 2002, 14, 327–333. [Google Scholar] [CrossRef]
- Inthata, S.; Kowtanapanich, W.; Cheerarot, R. Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks. Mater. Struct. 2013, 46, 1707–1721. [Google Scholar] [CrossRef]
- Boğa, A.R.; Öztürk, M.; Topçu, İ.B. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos. Part B Eng. 2013, 45, 688–696. [Google Scholar] [CrossRef]
- Yasarer, H.; Najjar, Y.M. Characterizing the permeability of Kansas concrete mixes used in PCC pavements. Int. J. Geomech. 2014, 14, 04014017. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Puttonen, J. Monitoring, evaluation and long-term forecasting of hygrothermal performance of thick-walled concrete structure. In Proceedings of the OECD/NEA WGIAGE Workshop on the Non-Destructive Evaluation of Thick-Walled Concrete Structures; OECD: Prague, Czech Republic, 2014; pp. 121–143. [Google Scholar]
- Taffese, W.Z.; Sistonen, E. Neural network based hygrothermal prediction for deterioration risk analysis of surface-protected concrete façade element. Constr. Build. Mater. 2016, 113, 34–48. [Google Scholar] [CrossRef]
- Song, H.-W.; Kwon, S.-J. Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure. Cem. Concr. Res. 2009, 39, 814–824. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Lee, B.-J.; Kwon, S.-J. Evaluation technique of chloride penetration using apparent diffusion coefficient and neural network algorithm. Adv. Mater. Sci. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Hodhod, O.A.; Ahmed, H.I. Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete. HBRC 2013, 9, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Parichatprecha, R.; Nimityongskul, P. Analysis of durability of high performance concrete using artificial neural networks. Constr. Build. Mater. 2009, 23, 910–917. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E. Significance of chloride penetration controlling parameters in concrete: Ensemble methods. Constr. Build. Mater. 2017, 139, 9–23. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E. Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Autom. Constr. 2017, 77, 1–14. [Google Scholar] [CrossRef]
- Hunkeler, F. Corrosion in reinforced concrete: Processes and mechanisms. In Corrosion in Reinforced Concrete Structures; Böhni, H., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–45. ISBN 0-8493-2583-8. [Google Scholar]
- Akid, R. Corrosion of engineering materials. In The Handbook of Advanced Materials: Enabling New Designs; Wessel, J.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 487–542. ISBN 978-0-471-45475-5. [Google Scholar]
- Barroca, N.; Borges, L.M.; Velez, F.J.; Monteiro, F.; Górski, M.; Castro-Gomes, J. Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr. Build. Mater. 2013, 40, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Cabezas, J.; Sánchez-Rodríguez, T.; Gómez-Galán, J.A.; Cifuentes, H.; Carvajal, R.G. Compact embedded wireless sensor-based monitoring of concrete curing. Sensors 2018, 18, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strangfeld, C.; Johann, S.; Bartholmai, M. Smart RFID sensors embedded in building structures for early damage detection and long-term monitoring. Sensors 2019, 19, 5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search Terms | Selection Criteria | Search Result | Total Number of Studies Included | ||||
---|---|---|---|---|---|---|---|
Document Type | Scopus | Web of Science | |||||
Open Access | Closed Access | Open Access | Closed Access | ||||
Chloride sensor, concrete | 10 years (2009–2019) | Original article | 6 | 6 | 4 | 8 | 21 |
Conference paper | - | 4 | - | - | |||
Book chapter | - | 1 | - | - | |||
Conference review | - | 1 | - | - | |||
Review article | 1 | - | 1 | - | |||
pH sensor, concrete | 10 years (2009–2019) | Original article | 2 | 8 | 5 | 3 | 13 |
Conference paper | - | 3 | - | 1 | |||
Book chapter | - | 3 | - | - | |||
Conference review | - | - | - | - | |||
Review article | 1 | 1 | - | 1 | |||
Total | 10 | 27 | 10 | 13 | 34 |
Electrode | Type | Potential (mV vs. NHE) | Typical Configuration |
---|---|---|---|
Calomel | Unpolarizable | +244 | Mercury chloride (Hg2Cl2) paste on mercury (Hg) and a base metal rod (Pt) in a solution of potassium chloride (KCl). |
Copper/copper sulphate | +316 | Copper rod surrounded by a saturated solution of copper sulphate. | |
Silver/silver chloride | +199 | Silver rod in silver chloride paste in a saturated solution or 0.5 M KCl solution. | |
Manganese dioxide | +365 | Manganese dioxide paste on a base material (graphite) in 0.5 M potassium hydroxide (KOH) solution with a cementitious plug as contact to the concrete. | |
Graphite | Polarizable | +150 ± 20 | Delivered with an isolating jacket leaving the tip exposed. |
Activated titanium | +150 ± 20 | ||
Stainless steel | +150 ± 20 | ||
Lead | −450 |
No. | Sensor Types | Electrode Used | Tested Environment | The Examination Focuses on | Exposure Time | Performance Evaluation | Publication Year | Data Transmission Method | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | Cl− | Ag/AgCl | simulated concrete pore solution |
| 2 months | The sensor exhibits insignificant interference from fluoride, sulphate, and hydroxyl however substantial from bromide and sulphide. In completely chloride-free alkaline solutions, the ISEs were not stable over time, but upon arrival of Cl−, it reliably measures the Cl− concentrations. | 2016 | wired | [44] |
2 | Ag/AgCl | mortar |
| 20 days | The sensor enabled determination of Cl− concentrations in mortar specimens that nearly followed Fick’s law for transient diffusion. In concrete it is found to be reasonably stable for the duration of the experiment. It also exhibits good sensitivity in a wide range of Cl− concentrations. | 2006 | wired | [38] | |
concrete | ~100 days | ||||||||
3 | Ag/AgCl | simulated concrete pore solution |
| 1000 s | Cl− concentration at 1000 mM, the composition of the solution has a minimum effect on the sensor’s response. The influence of pH on the potential value of the sensor is trivial at Cl− concentrations of >4 mM, and thus the pH value must be simultaneously monitored to accurately determine the Cl− content with minimal concentration. | 2014 | wired | [41] | |
4 | Ag/AgCl | simulated concrete pore solution |
| >6 months | The sensor was affected by the pH of the solution in the complete absence of Cl−, but in the presence of Cl− it showed good long-term stability even in high-alkaline solutions. | 2010 | wired | [32] | |
mortar | ~2 months | ||||||||
5 | Ag/AgCl | concrete |
| 2 years | Based on the experiments carried out in concrete specimens composed of different mineral admixtures, the authors conclude that continuous monitoring of Cl− concentration in concrete structure could be achieved. They also remarked that extra efforts are needed to develop low-cost, long-term, robust, and reliable Cl− potentiometric sensors to attain extensive applications in concrete environment. | 2017 | wired | [43] | |
6 | thick-film Ag/AgCl | simulate concrete pore solution |
| Not stated | The sensors respond to the activity of free Cl− in the concrete pore solution. The electrical potential of the sensor relies on the water content of the concrete. The thickness gained from the composition of the thick-film technique (10 μm) and resistive pastes enhances its durability. It is a promising Cl− sensor for concrete structure since they are robust, miniaturized, inexpensive, and have long-term stability. | 2016 | wired | [42] | |
concrete | ~62 days Not clearly stated, deduced from results | ||||||||
7 | polymer coated Ag/AgCl | concrete |
| 60 days | The sensor exhibited outstanding chloride sensing ability. It is well stable in an alkaline medium. The existence of the coating polymer prevented the formation of Ag2O in the electrode. | 2017 | wired | [45] | |
8 | MnO2 Ag/AgCl | simulated concrete pore solution |
| 90 days | The sensor is slightly influenced by the interfering ions of K+, Ca2+, Na+, and SO42−, but considerably affected by the pH at low chloride concentration. Over the range from 5 to 45 °C, the sensor’s potential reading linearly grows with the solution temperature and has excellent polarization behaviour. | 2010 | wired | [46] | |
9 | Ag/AgCl | simulated concrete pore solution |
| 3 months | It reveals acceptable sensitivity to Cl− and clear Nernstian relationship between potential response and wide range of Cl− concentration. There is insignificant discrepancy of electrode’s potential response due to the interfering ions of K+, Ca2+, Na+, and SO42−. | 2011 | wired | [47] | |
10 | Ag/AgCl | concrete |
| Not stated | Reliable capacitance measurement, which is caused by the change in Cl− concentration from 0.01 to 0.2 M. The measurements are reliable up to 35 mm between sensor and readout coil. The communication does not need battery/external power. | 2015 | wireless | [48] | |
11 | Ag/AgCl | concrete |
| 15 days | The sensitivity of the sensor to Cl− is high and the response time of the electrodes are sufficiently fast. It reliably measures the Cl− content in concrete within a communication distance of 16.3 m. | 2017 | wireless | [39] | |
12 †† | Ag/AgCl | simulated concrete pore solution |
| 2 years | The sensor exhibited acceptable stability and great reproducibility in simulated concrete pore solution and other liquid solutions of different pH values. The sensors embedded in the mortar also demonstrated reasonably good stability. | 2009 | wired | [40] | |
mortar | |||||||||
13 | pH | Ir/IrO2 | mortar |
| ~160 days | The authors utilized an embeddable pH sensor based on thermally oxidized Ir/IrO2. The results from the sensor provide insight in the carbonation process and in the kinetic processes, such as transport and phases transformations. | 2017 | wired | [49] |
14 | IrOx | alkaline test solutions |
| ~2 years | The sensor is able to measure the pH with a maximum error of 0.5 units in a pH range of 9–13.5. It is stable, oxygen independent, and delivers precise and reproducible potential-pH responses. However, the electrode requires conditioning in highly alkaline solutions for at a minimum of 3–4 months. The formed (10–25 μm) thickness of the oxide layer is beneficial for long-term stability in concrete structure. | 2017 | wired | [50] | |
mortar | 160 days | ||||||||
15 | W/WO3 | simulated concrete pore solution |
| 10 months | The sensitivity was slightly decreased within the range from pH 5 to 12, but the responses are stable and repeatable to alkaline solutions (pH > 12). The sub-Nernstian response was observed within the range from pH 2 to 5. All the analysed interfering ions, SO42−, K+, and Cl−, had no substantial impact on electrode potential. The electrode is robust, simple, low cost, and temperature resistant. | 2010 | wired | [51] | |
16 ††† | thick-film Ag/Ag2O | simulated concrete pore solution |
| time varies based on the property under investigation | Ag2O electrodes exhibited excellent electrochemical response to pH variations in the solution. Indeed, electrode potential variation was observed when the Cl− concentration is about 10−2.5 M. With the rising of temperature, the average experimental slope slightly increases like the theoretical ones. In general, it reveals very good reproducibility, reversibility, and an acceptable response time. The sensor array allows the authors to monitor the carbonation progress in hardened concrete. | 2016 | wired | [52] | |
concrete |
| 19 days | |||||||
17 † | Ir/IrOx Ag/AgCl | solutions of different pH |
| 2 days | By utilizing temperature compensation, a sensitivity of less than 0.1 pH was achieved with a response time of below 1 s. A resonant frequency change less than 8 kHz and a quality factor variation of 1.32 were obtained with separation distances between 2.5 and 8.5 cm. The temperature compensation ability and the design simplicity of the sensor make it suitable to be integrated by printed technology. | 2013 | wireless | [53] | |
18 † | pH/Cl− | Ir/IrO2 | simulated concrete pore solution |
| 100 days | The integrated pH/Cl− sensor exhibited good linear responses to the logarithm of the Cl− concentration (1 × 10−4–2 M) and pH 1–14. It is stable, robust, and sensitive, indicating its potential to realize in situ and long-term monitoring of pH values and Cl− concentrations in concrete environment. | 2006 | wired | [54] |
Ag/AgCl | |||||||||
19 †† | MO | cement paste |
| 1 year | The pH/Cl− probes were calibrated in simulated pore solutions concerning temperature and pH fluctuations. After calibration, it was tested in cement paste. The result demonstrated that the sensor is reliable and stable. | 2012 | wired | [55] | |
Ag/AgCl | |||||||||
20 †† | Ti/IrO2 | concrete |
| 224 days | The pH/Cl− probes have great sensitivity, reliability, and potential responses in a wide range of pH and Cl− concentrations. This multifunctional sensor is also used to monitor the corrosion behaviour of rebar in concrete. | 2011 | wired | [56] | |
Ag/AgCl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taffese, W.Z.; Nigussie, E. Autonomous Corrosion Assessment of Reinforced Concrete Structures: Feasibility Study. Sensors 2020, 20, 6825. https://doi.org/10.3390/s20236825
Taffese WZ, Nigussie E. Autonomous Corrosion Assessment of Reinforced Concrete Structures: Feasibility Study. Sensors. 2020; 20(23):6825. https://doi.org/10.3390/s20236825
Chicago/Turabian StyleTaffese, Woubishet Zewdu, and Ethiopia Nigussie. 2020. "Autonomous Corrosion Assessment of Reinforced Concrete Structures: Feasibility Study" Sensors 20, no. 23: 6825. https://doi.org/10.3390/s20236825
APA StyleTaffese, W. Z., & Nigussie, E. (2020). Autonomous Corrosion Assessment of Reinforced Concrete Structures: Feasibility Study. Sensors, 20(23), 6825. https://doi.org/10.3390/s20236825