Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
3. Results
3.1. General Trend of Chl-a Concentration in Lake Ladoga: 1997–2019
3.2. Spatial Distribution of Chl-a Concentration Across Lake Ladoga
4. Discussion
4.1. Effect of Temperature and Eutrophication on Chl-a Concentrations
4.2. Impact from Industries, Coastal Settlements, and External Load
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pozdnyakov, D.V.; Korosov, A.A.; Petrova, N.A.; Grassl, H. Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status. J. Great Lakes Res. 2013, 39, 34–45. [Google Scholar]
- Moiseenko, T.I.; Sharov, A.N. The retrospective analysis of aquatic ecosystem modification of Russian large lakes under antropogenic impacts. In Ecotoxicology around the Globe; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 309–324. [Google Scholar]
- Rukhovets, L.; Filatov, N. Ladoga and Onego—Great European Lakes; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9783540681441. [Google Scholar]
- Rumyantsev, V.; Viljanen, M.; Slepukhina, T. The present state of Lake Ladoga, Russia—A review. Boreal Environ. Res. 1999, 4, 201–214. [Google Scholar]
- Naumenko, M.A.; Avinsky, V.A.; Barbashova, M.A.; Guzivaty, V.V.; Karetnikov, S.G.; Kapustina, L.L.; Letanskaya, G.I.; Raspletina, G.F.; Raspopov, I.M.; Rychkova, M.A.; et al. Current ecological state of the Volkhov Bay of the Ladoga Lake. Ecol. Chem. 2000, 9, 75–87. [Google Scholar]
- Kondratyev, S.; Gronskaya, T.; Ignatieva, N.; Blinova, I.; Telesh, I.; Yefremova, L. Assessment of present state of water resources of Lake Ladoga and its drainage basin using Sustainable Development indicators. Ecol. Indic. 2002, 2, 79–92. [Google Scholar]
- Malachovskij, D.B.; Delusin, I.V.; Gej, N.A.; Dginoridzse, R.N. Evidence from the Neva River Valley, Russia, of the Holocene history of Lake Ladoga. Fennia 1996, 174, 113–123. [Google Scholar]
- Sevastiyanov, D.V.; Colpaert, A.; Korostelyov, E.; Mulyava, O.; Shitova, L. Management of tourism and recreation possibilities for the sustainable development of the north-western border region in Russia. Nord. Geogr. Publ. 2014, 43, 27–38. [Google Scholar]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar]
- Pozdnyakov, D.V.; Johannessen, O.M.; Korosov, A.A.; Pettersson, L.H.; Grassl, H.; Miles, M.W. Satellite evidence of ecosystem changes in the White Sea: A semi-enclosed arctic marginal shelf sea. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar]
- Marcelli, M.; Piermattei, V.; Madonia, A.; Mainardi, U. Design and application of new low-cost instruments for marine environmental research. Sensors 2014, 14, 23348–23364. [Google Scholar]
- Piermattei, V.; Madonia, A.; Bonamano, S.; Martellucci, R.; Bruzzone, G.; Ferretti, R.; Odetti, A.; Azzaro, M.; Zappalà, G.; Marcelli, M. Cost-effective technologies to study the arctic ocean environment. Sensors 2018, 18, 2257. [Google Scholar]
- Xing, X.; Morel, A.; Claustre, H.; Antoine, D.; D’Ortenzio, F.; Poteau, A.; Mignot, A. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval. J. Geophys. Res. Ocean. 2011, 116, 1–14. [Google Scholar]
- Gómez, J.A.D.; Alonso, C.A.; García, A.A. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Environ. Monit. Assess. 2011, 181, 317–334. [Google Scholar] [PubMed]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 2012, 117, 1–25. [Google Scholar]
- Karetnikov, S.; Leppäranta, M.; Montonen, A. A time series of over 100 years of ice seasons on Lake Ladoga. J. Great Lakes Res. 2017, 43, 979–988. [Google Scholar]
- Karetnikov, S.; Naumenko, M. Lake Ladoga ice phenology: Mean condition and extremes during the last 65 years. Hydrol. Process. 2011, 25, 2859–2867. [Google Scholar]
- Sagitov, R.; Zavarzin, A.; Ieshko, E.; Pogrebov, V.; Baranov, B.; Fokin, Y.; Ussenkov, S.; Kurashov, E.; Kiyko, O.; Vasilevich, V.; et al. Ladoga. Climate. Available online: http://ladoga.krc.karelia.ru/environ/climate/index.shtml (accessed on 23 September 2020).
- Subetto, D.A.; Davydova, N.N.; Rybalko, A.E. Contribution to the lithostratigraphy and history of Lake Ladoga. Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 140, 113–119. [Google Scholar]
- Garnesson, P.; Mangin, A.; D’Andon, O.F.; Demaria, J.; Bretagnon, M. The CMEMS GlobColour chlorophyll a product based on satellite observation: Multi-sensor merging and flagging strategies. Ocean Sci. 2019, 15, 819–830. [Google Scholar]
- GC-PL-NIVA-FVR-01. ESA DUE GlobColour Global Ocean Colour for Carbon Cycle Research Full Validation Report. 14 December 2007. Available online: https://www.yumpu.com/en/document/read/5924619/validation-report-globcolour-project (accessed on 20 November 2020).
- Letanskaya, G.I.; Protopopova, E.V. The current state of phytoplankton in Lake Ladoga (2005−2009). Inl. Water Biol. 2012, 5, 310–316. [Google Scholar]
- OBPG Ocean Biology Processing Group (OBPG). SeaDAS 7.5.3 Science Software, NASA Goddard Space Flight Center, Ocean Ecology Laboratory. 2019. Available online: https://seadas.gsfc.nasa.gov/about/ (accessed on 26 September 2019).
- Inkscape: An Open-Source Vector Graphics Editor. Available online: https://inkscape.org/2019 (accessed on 23 March 2019).
- R Core Team 2020: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http//www.R-project.org/ (accessed on 11 September 2020).
- Robert, J. Hijmans Raster: Geographic Data Analysis and Modeling. R Package Version 3.0-12. 2020. 2020. Available online: https://rdrr.io/cran/raster/ (accessed on 11 September 2020).
- Ooms, J. Writexl: Export Data Frames to Excel “xlsx” Format. R Package Version 1.2 2019. 2019. Available online: https://CRAN.R-project.org/package=writexl (accessed on 11 September 2020).
- Naumenko, M.A.; Karetnikov, S.G.; Tikhomirov, A.I. Main features of the thermal regime of Lake Ladoga during the ice-free period. Hydrobiologia 1996, 322, 69–73. [Google Scholar]
- Naumenko, M.; Karetnikov, S.; Guzivaty, V. Thermal regime of Lake Ladoga as a typical dimictic lake. 2007, 7, 63–70. [Google Scholar]
- Beletsky, D.; Saylor, J.H.; Schwab, D.J. Mean circulation in the Great Lakes. J. Great Lakes Res. 1999, 25, 78–93. [Google Scholar] [CrossRef]
- Natalia, V. Ignatieva Distribution and release of sedimentary phosphorus in Lake Ladoga. In A Case Approach to Perioperative Drug-Drug Interactions; Springer: Berlin/Heidelberg, Germany, 1996; Volume 322, pp. 129–136. [Google Scholar]
- Holopainen, A.L.; Huttunen, P.; Letanskaya, G.I.; Protopopova, E.V. The trophic state of Lake Ladoga as indicated by late summer phytoplankton. Hydrobiologia 1996, 322, 9–16. [Google Scholar] [CrossRef]
- Sharov, A.N.; Berezina, N.A.; Nazarova, L.E.; Poliakova, T.N.; Chekryzheva, T.A. Links between biota and climate-related variables in the Baltic region using Lake Onega as an example. Oceanologia 2014, 56, 291–306. [Google Scholar] [CrossRef]
- Filazzola, A.; Blagrave, K.; Imrit, M.A.; Sharma, S. Climate Change Drives Increases in Extreme Events for Lake Ice in the Northern Hemisphere. Geophys. Res. Lett. 2020, 47, e2020GL089608. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Öğlü, B.; Möls, T.; Kaart, T.; Cremona, F.; Kangur, K. Parameterization of surface water temperature and long-term trends in Europe’s fourth largest lake shows recent and rapid warming in winter. Limnologica 2020, 82. [Google Scholar] [CrossRef]
- Šorf, M.; Davidson, T.A.; Brucet, S.; Menezes, R.F.; Søndergaard, M.; Lauridsen, T.L.; Landkildehus, F.; Liboriussen, L.; Jeppesen, E. Zooplankton response to climate warming: A mesocosm experiment at contrasting temperatures and nutrient levels. Hydrobiologia 2015, 742, 185–203. [Google Scholar] [CrossRef]
- Li, J.; Tian, L.; Song, Q.; Sun, Z.; Yu, H.; Xing, Q. Temporal variation of chlorophyll-a concentrations in highly dynamicwaters from unattended sensors and remote sensing observations. Sensors 2018, 18, 2699. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.F.; Zhu, L. Changing trends and relationship between global ocean chlorophyll and sea surface temperature. Procedia Environ. Sci. 2012, 13, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Letanskaya, G.I. Phytoplankton monitoring of Lake Ladoga. In Proceedings of the Third International Lake Ladoga Symposium, Joensuu, Finland, 23–27 August 1999; pp. 114–121. [Google Scholar]
- Isachenko, G.A. Lake Ladoga Region: Human impacts and recent environmental changes. First Int. Lake Ladoga Symp. 1996, 322, 217–221. [Google Scholar]
- Rusanov, A.G.; Stanislavskaya, E.V.; Ács, É. Periphytic algal assemblages along environmental gradients in the rivers of the Lake Ladoga basin, Northwestern Russia: Implication for the water quality assessment. Hydrobiologia 2012, 695, 305–327. [Google Scholar] [CrossRef]
- Drabkova, V.G.; Rumyantsev, V.A.; Sergeeva, L.V.; Slepukhina, T.D. Ecological problems of Lake Ladoga: Causes and solutions. First Int. Lake Ladoga Symp. 1996, 322, 1–7. [Google Scholar]
- Moiseenko, T.; Sharov, A.; Voinov, A.; Shalabodov, A. Long-Term Changes in the Large Lake Ecosystems Under Pollution: The Case of the North-East European Lakes. Geogr. Environ. Sustain. 2012, 5, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Moiseenko, T.; Sharov, A. Large Russian lakes ladoga, onega, and imandra under strong pollution and in the period of revitalization: A review. Geoscience 2019, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Moiseenko, T.I.; Sharov, A.N.; Vandish, O.I.; Kudryavtseva, L.P.; Gashkina, N.A.; Rose, C. Long-term modification of Arctic lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia). Limnologica 2009, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kalinkina, N.; Tekanova, E.; Korosov, A.; Zobkov, M.; Ryzhakov, A. What is the extent of water brownification in Lake Onego, Russia? J. Great Lakes Res. 2020. [Google Scholar] [CrossRef]
- Meriläinen, J.J.; Hynynen, J.; Palomäki, A.; Veijola, H.; Witick, A.; Mäntykoski, K.; Granberg, K.; Lehtinen, K. Pulp and paper mill pollution and subsequent ecosystem recovery of a large boreal lake in Finland: A palaeolimnological analysis. J. Paleolimnol. 2001, 26, 11–35. [Google Scholar] [CrossRef]
- Soszka, H.; Gołub, M.; Kolada, A.; Cydzik, D. Chlorophyll a based assessment of Polish lakes. Verh. Internet. Verein. Limonol. 2008, 30, 416–418. [Google Scholar] [CrossRef]
- Räike, A.; Pietiläinen, O.P.; Rekolainen, S.; Kauppila, P.; Pitkänen, H.; Niemi, J.; Raateland, A.; Vuorenmaa, J. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975−2000. Sci. Total Environ. 2003, 310, 47–59. [Google Scholar] [CrossRef]
- Pöykiö, R.; Nurmesniemi, H.; Kivilinna, V.A. EOX concentrations in sediment in the part of the Bothnian Bay affected by effluents from the pulp and paper mills at Kemi, Northern Finland. Environ. Monit. Assess. 2008, 139, 183–194. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Pöykiö, R.; Keiski, R.L. A case study of waste management at the Northern Finnish pulp and paper mill complex of Stora Enso Veitsiluoto Mills. Waste Manag. 2007, 27, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Kaplin, C.; Hemming, J.; Holmbom, B. Improved water quality by process renewal in a pulp and paper mill. Boreal Environ. Res. 1997, 2, 239–246. [Google Scholar]
- Pöykiö, R.; Taskila, E.; Perämämäki, P.; Nurmesniemi, H.; Kivililinna, V.-A.; Kuokkanen, T.; Virta, P. Sediment, Perch (Perca fluviatilis L.) and bottom fauna as indicators of effluent discharged from the pulp and paper mill complex at Kemi, northern Finland. Water Air Soil Pollut. 2004, 158, 325–343. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbagir, A.-M.G.; Colpaert, A. Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations. Sensors 2020, 20, 6881. https://doi.org/10.3390/s20236881
Gbagir A-MG, Colpaert A. Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations. Sensors. 2020; 20(23):6881. https://doi.org/10.3390/s20236881
Chicago/Turabian StyleGbagir, Augustine-Moses Gaavwase, and Alfred Colpaert. 2020. "Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations" Sensors 20, no. 23: 6881. https://doi.org/10.3390/s20236881
APA StyleGbagir, A. -M. G., & Colpaert, A. (2020). Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations. Sensors, 20(23), 6881. https://doi.org/10.3390/s20236881