High-Resolution Thermal Imaging and Analysis of TIG Weld Pool Phase Transitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Welding Experimental Arrangement
2.2. Camera Design and Imaging
2.3. Calibration
2.4. Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Amoo, L.M. On the design and structural analysis of jet engine fan blade structures. Prog. Aerosp. Sci. 2013, 60, 1–11. [Google Scholar] [CrossRef]
- French, R.; Marin-Reyes, H. High value intelligent aerospace turbofan jet engine blade re-manufacturing System. In Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future; Springer: Berlin/Heidelberg, Germany, 2016; pp. 241–252. [Google Scholar]
- Tarn, T.-J.; Chen, S.-B.; Zhou, C. Robotic Welding, Intelligence and Automation; Springer: Berlin/Heidelberg, Germany, 2007; Volume 362. [Google Scholar]
- French, R.; Marin-Reyes, H.; Rendell-Read, A. A Robotic re-manufacturing system for high-value aerospace repair and overhaul. In Transactions on Intelligent Welding Manufacturing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 36–47. [Google Scholar]
- Mirapeix, J.; Cobo, A.; Conde, O.; Jaúregui, C.; López-Higuera, J. Real-time arc welding defect detection technique by means of plasma spectrum optical analysis. NDT E Int. 2006, 39, 356–360. [Google Scholar] [CrossRef]
- Bacioiu, D.; Melton, G.; Papaelias, M.; Shaw, R. Automated defect classification of SS304 TIG welding process using visible spectrum camera and machine learning. NDT E Int. 2019, 107, 102139. [Google Scholar] [CrossRef]
- Ring, E.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33. [Google Scholar] [CrossRef]
- Everton, S.K.; Hirsch, M.; Stravroulakis, P.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [Google Scholar] [CrossRef]
- Boone, N.; Zhu, C.; Smith, C.; Todd, I.; Willmott, J. Thermal near infrared monitoring system for electron beam melting with emissivity tracking. Addit. Manuf. 2018, 22, 601–605. [Google Scholar] [CrossRef]
- Seppala, J.E.; Migler, K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Kovacevic, R. Development of a real-time laser-based machine vision system to monitor and control welding processes. Int. J. Adv. Manuf. Tech. 2012, 63, 235–248. [Google Scholar] [CrossRef]
- French, R.; Yeadon, W.; Kapellmann, G.; Marin-Reyes, H. Development of a Vision System for TIG Welding-A Work-in-Progress Study. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA) 2018, Torino, Italy, 4–7 September 2018; IEEE: Piscataway, NY, USA, 2018; pp. 1193–1196. [Google Scholar]
- Hamamatsu, ORCA-Flash4.0 v2, (n.d.) 1–8. Available online: https://www.hamamatsu.com/resources/pdf/sys/SCAS0081E_C11440-22CU.pdf (accessed on 19 December 2017).
- Saunders, P.; White, D.R. Physical basis of interpolation equations for radiation thermometry. Metrologia 2003, 40, 195. [Google Scholar] [CrossRef]
- Instruments, L. Landcal|Calibration Sources|AMETEK Land, (n.d.). Available online: https://www.ametek-land.com/products/calibrationsources/landcal (accessed on 27 September 2018).
- Preston-Thomas, H. The International Temperature Scale of 1990(ITS-90). Metrologia 1990, 27, 3–10. [Google Scholar] [CrossRef]
- Zhu, C.; Hobbs, M.J.; Masters, R.C.; Rodenburg, C.; Willmott, J.R. An Accurate Device for Apparent Emissivity Characterisation in Controlled Atmospheric Conditions up to 1423 K. IEEE Trans. Instrum. Meas. 2019, 69, 4210–4221. [Google Scholar] [CrossRef]
- Hobbs, M.; Tan, C.; Willmott, J. Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry. J. Instrum. 2013, 8, P03016. [Google Scholar] [CrossRef]
- Fukuyama, H.; Higashi, H.; Yamano, H. Thermophysical properties of molten stainless steel containing 5 mass% B4C. Nucl. Technol. 2019, 205, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Instruments, L. Cyclops L|Portable Non-Contact Thermometers|AMETEK Land, (n.d.). Available online: https://www.ametek-land.com/products/portable-non-contact-thermometers/cyclops-l-handheld-portable-non-contact-pyrometer (accessed on 27 September 2018).
- McEvoy, G.M.H.; Montag, V. Guide to the Realization of the ITS-90 Fixed Points for Radiation Thermometry. 2018. Available online: https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_2_5_RTFixedPoints_2018.pdf (accessed on 7 March 2019).
- Sakuma, F.; Hattori, S. Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector. Temp. Meas. Control. Sci. 1983, 32, 91–97. [Google Scholar]
- Davies, A.C. The Science and Practice of Welding; Cambridge University Press: Cambridge, UK, 1984; Volume 2. [Google Scholar]
- Green, D.A. A colour scheme for the display of astronomical intensity images. Bull. Astron. Soc. India 2011, 39, 28925. [Google Scholar]
- Wei, P.; Chang, C.; Chen, C. Surface ripple in electron-beam welding solidification. J. Heat Transf. 1996, 118, 960–969. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Tsai, H.-L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. Int. J. Heat Mass Transf. 2008, 51, 2537–2552. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boone, N.; Davies, M.; Willmott, J.R.; Marin-Reyes, H.; French, R. High-Resolution Thermal Imaging and Analysis of TIG Weld Pool Phase Transitions. Sensors 2020, 20, 6952. https://doi.org/10.3390/s20236952
Boone N, Davies M, Willmott JR, Marin-Reyes H, French R. High-Resolution Thermal Imaging and Analysis of TIG Weld Pool Phase Transitions. Sensors. 2020; 20(23):6952. https://doi.org/10.3390/s20236952
Chicago/Turabian StyleBoone, Nicholas, Matthew Davies, Jon Raffe Willmott, Hector Marin-Reyes, and Richard French. 2020. "High-Resolution Thermal Imaging and Analysis of TIG Weld Pool Phase Transitions" Sensors 20, no. 23: 6952. https://doi.org/10.3390/s20236952
APA StyleBoone, N., Davies, M., Willmott, J. R., Marin-Reyes, H., & French, R. (2020). High-Resolution Thermal Imaging and Analysis of TIG Weld Pool Phase Transitions. Sensors, 20(23), 6952. https://doi.org/10.3390/s20236952