Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Protocol and Measurements
2.4. Performance Testing
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blazevich, A.J.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Esformes, J.I.; Bampouras, T.M. Effect of back squat depth on lower-body postactivation potentiation. J. Strength Cond. Res. 2013, 27, 2997–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yetter, M.; Moir, G.L. The acute effects of heavy back and front squats on speed during forty-meter sprint trials. J. Strength Cond. Res. 2008, 22, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aandahl, H.S.; Von Heimburg, E.; Van den Tillaar, R. Effect of Postactivation Potentiation Induced by Elastic Resistance on Kinematics and Performance in a Roundhouse Kick of Trained Martial Arts Practitioners. J. Strength Cond. Res. 2018, 32, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Button, D.C.; Barbour, G.; Butt, J.C.; Young, W.B. Conflicting Effects of Fatigue and Potentiation on Voluntary Force. J. Strength Cond. Res. 2004, 18, 365. [Google Scholar]
- Mitchell, C.J.; Sale, D.G. Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation. Eur. J. Appl. Physiol. 2011, 111, 1957–1963. [Google Scholar] [CrossRef]
- Evetovich, T.K.; Conley, D.S.; McCawley, P.F. Postactivation Potentiation Enhances Upper- and Lower-Body Athletic Performance in Collegiate Male and Female Athletes. J. Strength Cond. Res. 2015, 29, 336–342. [Google Scholar] [CrossRef]
- Fukutani, A.; Takei, S.; Hirata, K.; Miyamoto, N.; Kanehisa, H.; Kawakami, Y. Influence of the Intensity of Squat Exercises on the Subsequent Jump Performance. J. Strength Cond. Res. 2014, 28, 2236–2243. [Google Scholar] [CrossRef]
- Seitz, L.B.; de Villarreal, E.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Flanagan, E.P. The Role of Elastic Energy in Activities with High Force and Power Requirements: A Brief Review. J. Strength Cond. Res. 2008, 22, 1705–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, E.; Judelson, D.A.; Brown, L.E.; Coburn, J.W.; Dabbs, N.C. Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J. strength Cond. Res. 2010, 24, 343–347. [Google Scholar] [CrossRef]
- Seitz, L.B.; Trajano, G.S.; Haff, G.G. The Back Squat and the Power Clean: Elicitation of Different Degrees of Potentiation. Int. J. Sports Physiol. Perform. 2014, 9, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Hoyo, M.; de Torre, A.; de la Pradas, F.; Sañudo, B.; Carrasco, B.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Gonzalo-Skok, O.; de Hoyo, M.; et al. Effects of eccentric overload bout on change of direction and performance in soccer players. Int. J. Sports Med. 2015, 36, 308–314. [Google Scholar] [PubMed]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Bigby, A.E.J.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Berg, H.E.; Tesch, P.A. A gravity-independent ergometer to be used for resistance training in space. Aviat. Sp. Environ. Med. 1994, 65, 752–756. [Google Scholar]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef]
- Chmielewski, T.L.; Myer, G.D.; Kauffman, D.; Tillman, S.M. Plyometric Exercise in the Rehabilitation of Athletes: Physiological Responses and Clinical Application. J. Orthop. Sport. Phys. Ther. 2006, 36, 308–319. [Google Scholar] [CrossRef] [Green Version]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sport. Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of Methods That Assess Lower-body Stretch-Shortening Cycle Utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; De Keijzer, K.L.; Leskauskas, Z.; Allen, W.J.; Dello Iacono, A.; McErlain-Naylor, S.A. Effect of Postactivation Potentiation After Medium vs. High Inertia Eccentric Overload Exercise on Standing Long Jump, Countermovement Jump, and Change of Direction Performance. J. Strength. Cond. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Fernández, F.; López-Contreras, G.; Mourão, L.; de Jesus, K.; de Jesus, K.; Zacca, R.; Vilas-Boas, J.P.; Fernandes, R.J.; Arellano, R. Eccentric flywheel post-activation potentiation influences swimming start performance kinetics. J. Sports Sci. 2019, 37, 443–451. [Google Scholar] [CrossRef]
- Naczk, M.; Lopacinski, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Naczk, A.; Adach, Z. Influence of short-term inertial training on swimming performance in young swimmers. Eur. J. Sport Sci. 2017, 17, 369–377. [Google Scholar] [CrossRef]
- Beato, M.; Stiff, A.; Coratella, G. Effects of Postactivation Potentiation after an Eccentric Overload Bout on Countermovement Jump and Lower-Limb Muscle Strength. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Beato, M.; Madruga-Parera, M.; Piqueras-Sanchiz, F.; Moreno-Perez, V.; Romero-Rodriguez, D.; Moreno-Pérez, V.; Romero-Rodriguez, D. Acute Effect of Eccentric Overload Exercises on Change of Direction Performance and Lower-Limb Muscle Contractile Function. J. Strength. Cond. Res. 2019. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Bautista, I.; Rivera, F. Post-activation performance enhancement (PAPE) after a single-bout of high-intensity flywheel resistance training. Biol. Sport 2020, 37, 343–350. [Google Scholar] [CrossRef]
- Timon, R.; Allemano, S.; Camacho-Cardeñosa, M.; Camacho-Cardeñosa, A.; Martinez-Guardado, I.; Olcina, G. Post-activation potentiation on squat jump following two different protocols: Traditional vs. inertial flywheel. J. Hum. Kinet. 2019, 69, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; de Paz, J.A. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur. J. Appl. Physiol. 2014, 114, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-R.; Lo, S.-L.; Wang, M.-H.; Yu, C.-F.; Peng, H.-T. Can Different Complex Training Improve the Individual Phenomenon of Post-Activation Potentiation? J. Hum. Kinet. 2017, 56, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerwosz, L.; Szczepek, E.; Blaszczyk, J.W.; Sokolowska, B.; Dmitruk, K.; Dudzinski, K.; Jurkiewicz, J.; Czernicki, Z.; Science, S.; Hesslink, R., Jr.; et al. Comparative effects of in-season full-back squat, resisted sprint training and plyometric training on explosive performance in U19 elite soccer players. Eur. J. Med. Res. 2002, 14, 652–657. [Google Scholar]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Cunningham, D.J.; Owen, N.J.; West, D.J.; Bracken, R.M.; Cook, C.J. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 2418–2423. [Google Scholar] [CrossRef]
- Loturco, I.; Kobal, R.; Kitamura, K.; Fernandes, V.; Moura, N.; Siqueira, F.; Cal Abad, C.C.; Pereira, L.A. Predictive Factors of Elite Sprint Performance: Influences of Muscle Mechanical Properties and Functional Parameters. J. Strength Cond. Res. 2019, 33, 974–986. [Google Scholar] [CrossRef]
- Harrison, A.J.; Keane, S.P.; Coglan, J. Force-velocity relationship and stretch-shortening cycle function in sprint and endurance athletes. J. Strength Cond. Res. 2004, 18, 473–479. [Google Scholar]
- Arede, J.; Gonzalo-Skok, O.; Bishop, C.; Schöllhorn, W.I.; Leite, N. Rotational flywheel training in youth female team sport athletes: Could inter-repetition movement variability be beneficial? J. Sports Med. Phys. Fit. 2020, 1–20. [Google Scholar] [CrossRef]
- Wilson, J.M.; Loenneke, J.P.; Jo, E.; Wilson, G.J.; Zourdos, M.C.; Kim, J.S. The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 2012, 26, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Gonzalo-Skok, O.; Carrasquilla, I.; Asián-Clemente, J.; Santalla, A.; Lara-Lopez, P.; Núñez, F.J. Relationships between Change of Direction, Sprint, Jump, and Squat Power Performance. Sports 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasper, K. Sports Training Principles. Curr. Sports Med. Rep. 2019, 18, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.; Barroso, R.; Andries, O. Post-activation Potentiation in Propulsive Force after Specific Swimming Strength Training. Int. J. Sports Med. 2015, 37, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.C.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-Analysis of Postactivation Potentiation and Power. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef]
- Smirniotou, A.; Katsikas, C.; Paradisis, G.; Argeitaki, P.; Zacharogiannis, E.; Tziortzis, S. Strength-power parameters as predictors of sprinting performance. J. Sports Med. Phys. Fit. 2008, 48, 447–454. [Google Scholar]
Flywheel | Traditional | Between-Group Comparsions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | p | d | Pre | Post | p | d | F | p | η2p | ||
CMJ (m) | All | 0.35 | 0.36 | <0.001 * | 1.192 | 0.35 | 0.36 | <0.001 * | −0.887 | 2.410 | 0.127 | 0.046 |
±0.05 | ±0.04 | ±0.05 | ±0.05 | |||||||||
Weak | 0.35 | 0.36 | <0.001 * | 1.218 | 0.35 | 0.36 | 0.002 * | −0.940 | 0.900 | 0.350 | 0.029 | |
±0.06 | ±0.06 | ±0.05 | ±0.05 | |||||||||
Strong | 0.35 | 0.37 | 0.006* | 1.135 | 0.36 | 0.37 | 0.038 * | −0.770 | 1.470 | 0.241 | 0.075 | |
±0.05 | ±0.04 | ±0.05 | ±0.05 | |||||||||
Sprint (s) | All | 1.92 | 1.87 | 0.001 * | 0.707 | 1.90 | 1.87 | 0.025 * | 0.466 | 0.528 | 0.471 | 0.010 |
±0.14 | ±0.14 | ±0.15 | ±0.14 | |||||||||
Weak | 1.90 | 1.86 | 0.063 | 0.501 | 1.91 | 1.87 | 0.066 | 0.497 | 0.007 | 0.932 | 0.000 | |
±0.16 | ±0.16 | ±0.17 | ±0.15 | |||||||||
Strong | 1.95 | 1.89 | 0.001 * | 1.484 | 1.88 | 1.86 | 0.174 | 0.467 | 5.110 | 0.036 † | 0.221 | |
±0.09 | ±0.10 | ±0.13 | ±0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sañudo, B.; de Hoyo, M.; Haff, G.G.; Muñoz-López, A. Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training. Sensors 2020, 20, 7156. https://doi.org/10.3390/s20247156
Sañudo B, de Hoyo M, Haff GG, Muñoz-López A. Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training. Sensors. 2020; 20(24):7156. https://doi.org/10.3390/s20247156
Chicago/Turabian StyleSañudo, Borja, Moisés de Hoyo, G Gregory Haff, and Alejandro Muñoz-López. 2020. "Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training" Sensors 20, no. 24: 7156. https://doi.org/10.3390/s20247156
APA StyleSañudo, B., de Hoyo, M., Haff, G. G., & Muñoz-López, A. (2020). Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training. Sensors, 20(24), 7156. https://doi.org/10.3390/s20247156