Hybrid Path Planning Combining Potential Field with Sigmoid Curve for Autonomous Driving
Abstract
:1. Introduction
- (1)
- A novel hybrid path planning method is proposed to get better collision-free path for improvements on vehicle stability and ride comfort during autonomous driving by combining potential field with sigmoid curve.
- (2)
- Based on the distribution function of two-dimensional joint probability density, an improved potential field of the obstacle is designed to mimic more realistic distribution of collision risk by decoupling the PF in longitudinal and lateral directions.
- (3)
- With the designed objective of the shortest path generation, the trajectory is optimized to improve the vehicle stability and the ride comfort during autonomous driving by considering the constraints of collision avoidance and vehicle dynamics.
2. An Improved Potential Field-Based Path Planning
2.1. The Design of PF Functions
2.1.1. Road PFs
2.1.2. Obstacle Potential Field
2.2. Collision-Free Path Generation
3. A Hybrid Path Planning Method
3.1. Definition of the Sigmoid Curve
3.2. Tunable Features of the Sigmoid Curve
3.3. Configuration of the Sigmoid Curve
3.3.1. Collision-Free Path Generation of PFBM
3.3.2. Parameter Configuration
3.4. Trajectory Optimization with Sigmoid Curves
3.4.1. Collision Avoidance Constraint
3.4.2. The Constraints of Vehicle Dynamics
3.4.3. Geometric Constraints
4. Verification and Discussion
4.1. Driving Scenarios for Simulation and Evaluation
4.2. Path Tracking Controller for Validation
4.3. Results and Discussion
4.3.1. Static Scenario
4.3.2. Dynamic Scenario
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AVs | Autonomous Vehicles |
PF | Potential Field |
OPF | Obstacle Potential Field |
PFBM | Potential Field-based Path Planning Method |
HPFSM | Hybrid Potential Field Sigmoid Curve Method |
LTV-MPC | Linear Time-varying Model Predictive Tracking Controller |
References
- Rimon, E.; Koditschek, D.E. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 1992, 8, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Liu, L. Distributed formation control of nonholonomic vehicles subject to velocity constraints. IEEE Trans. Ind. Electron. 2016, 63, 1289–1298. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Khajepour, A.; Ding, H.; Yuan, K.; Qin, Y. A Novel Local Motion Planning Framework for Autonomous Vehicles Based on Resistance Network and Model Predictive Control. IEEE Trans. Veh. Technol. 2020, 69, 55–66. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Khajepour, A.; Zhang, Y.; Rasekhipour, Y.; Cao, D. Crash mitigation in motion planning for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3313–3323. [Google Scholar] [CrossRef]
- González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [Google Scholar] [CrossRef]
- Anderson, S.J.; Karumanchi, S.B.; Iagnemma, K. Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012; pp. 383–388. [Google Scholar]
- Hwang, J.Y.; Kim, J.S.; Lim, S.S.; Park, K.H. A fast path planning by path graph optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2003, 33, 121–128. [Google Scholar] [CrossRef]
- Ziegler, J.; Werling, M.; Schröder, J. Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 787–791. [Google Scholar]
- Ziegler, J.; Stiller, C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 1879–1884. [Google Scholar]
- Chen, L.; Shan, Y.; Tian, W.; Li, B.; Cao, D. A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems. IEEE/Asme Trans. Mechatron. 2018, 23, 2568–2578. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Švestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, H.; Waslander, S.L.; Gong, J.; Xiong, G.; Yang, T.; Liu, K. Hybrid trajectory planning for autonomous driving in highly constrained environments. IEEE Access 2018, 6, 32800–32819. [Google Scholar] [CrossRef]
- Mercy, T.; Van Parys, R.; Pipeleers, G. Spline-based motion planning for autonomous guided vehicles in a dynamic environment. IEEE Trans. Control Syst. Technol. 2018, 26, 2182–2189. [Google Scholar] [CrossRef]
- Brezak, M.; Petrovic, I. Real-time approximation of clothoids with bounded error for path planning applications. IEEE Trans. Robot. 2014, 30, 507–515. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Cao, D.; He, Z.; Zhu, Q. Real-Time Trajectory Planning for Autonomous Urban Driving: Framework, Algorithms, and Verifications. IEEE/ASME Trans. Mechatron. 2016, 21, 740–753. [Google Scholar] [CrossRef]
- Khatib, O. The Potential Field Approach And Operational Space Formulation In Robot Control. In Adaptive and Learning Systems: Theory and Applications; Narendra, K.S., Ed.; Springer: Boston, MA, USA, 1986; pp. 367–377. [Google Scholar]
- Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [Google Scholar] [CrossRef]
- Rasekhipour, Y.; Khajepour, A.; Chen, S.K.; Litkouhi, B. A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1255–1267. [Google Scholar] [CrossRef]
- Krogh, B.H.; Thorpe, C.E. Integrated path planning and dynamic steering control for autonomous vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7–10 April 1986; pp. 1664–1669. [Google Scholar]
- Li, M.; Song, X.; Cao, H.; Wang, J.; Huang, Y.; Hu, C.; Wang, H. Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field. Mech. Syst. Signal Proc. 2019, 124, 199–216. [Google Scholar] [CrossRef]
- Park, D.H.; Hoffmann, H.; Pastor, P.; Schaal, S. Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 1–3 December 2008; pp. 91–98. [Google Scholar]
- Li, G.; Yang, Y.; Zhang, T.; Qu, X.; Cao, D.; Cheng, B.; Li, K. Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios. Transp. Res. Part C Emerg. Technol. 2021, 122, 102820. [Google Scholar]
- Lee, J.; Nam, Y.; Hong, S. Random force based algorithm for local minima escape of potential field method. In Proceedings of the 2010 11th International Conference on Control Automation Robotics and Vision, Singapore, 7–10 December 2010; pp. 827–832. [Google Scholar]
- Li, G.; Yang, Y.; Qu, X. Deep learning approaches on pedestrian detection in hazy weather. IEEE Trans. Ind. Electron. 2020, 67, 8889–8899. [Google Scholar] [CrossRef]
- Montiel, O.; Orozco-Rosas, U.; Sepúlveda, R. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 2015, 42, 5177–5191. [Google Scholar] [CrossRef]
- Kovács, B.; Szayer, G.; Tajti, F.; Burdelis, M.; Korondi, P. A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robot. Auton. Syst. 2016, 82, 24–34. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom. 1992, 8, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Elbanhawi, M.; Simic, M.; Jazar, R. Randomized bidirectional B-spline parameterization motion planning. IEEE Trans. Intell. Transp. Syst. 2016, 17, 406–419. [Google Scholar] [CrossRef]
- Resende, P.; Nashashibi, F. Real-time dynamic trajectory planning for highly automated driving in highways. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 653–658. [Google Scholar]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- You, F.; Zhang, R.; Lie, G.; Wang, H.; Wen, H.; Xu, J. Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system. Expert Syst. Appl. 2015, 42, 5932–5946. [Google Scholar] [CrossRef]
- Li, S.E.; Li, G.; Yu, J.; Liu, C.; Cheng, B.; Wang, J.; Li, K. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles. Mech. Syst. Signal Proc. 2017, 98, 173–189. [Google Scholar] [CrossRef]
- Bialkowski, J.; Otte, M.; Karaman, S.; Frazzoli, E. Efficient collision checking in sampling-based motion planning via safety certificates. Int. J. Robot. Res. 2016, 35, 767–796. [Google Scholar] [CrossRef]
- Liu, W.; He, H.; Sun, F.; Lv, J. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system. Veh. Syst. Dyn. 2017, 55, 601–625. [Google Scholar] [CrossRef]
- Ataei, M.; Khajepour, A.; Jeon, S. Reconfigurable Integrated Stability Control for Four- and Three-wheeled Urban Vehicles With Flexible Combinations of Actuation Systems. IEEE/ASME Trans. Mechatron. 2018, 23, 2031–2041. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
X (m) | 0∼200 | (m) | 1.75 | (m) | 1.5 |
Y (m) | 0∼7 | (m) | 6 | (m) | 20 |
a | 0.5 | (m) | 1 | (m) | 1.5 |
b | 100 | (m) | 50 | 1 |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0 | |||||
3.5 | |||||
3.5 | |||||
−3.5 | |||||
V | 20 (m/s) | 2 (m/s) | 25 (deg/s) |
Symbol | Description | Value [Units] |
---|---|---|
Prediction horizon | 20 [unitless] | |
Control variable’s number | 2 [unitless] | |
State variable’s number | 6 [unitless] | |
Sampling period | 0.05 [s] | |
Limitation of steering wheel angle | ||
Steering wheel angle rate | ||
Longitudinal tire force limitation | ||
Tire force rate limitation | ||
Weights matrix of states tracking | , , , 0, , 0 | |
Weights matrix of control variables | , |
Symbol | Description | HPFSM | PFBM | |
---|---|---|---|---|
(m/s) | Maximum lateral acceleration | 2.504 | 6.254 | 59.9 |
(m/s) | Average lateral acceleration | 0.282 | 0.475 | 40.6 |
(deg/s) | Maximum yaw rate | 17.459 | 44.170 | 60.47 |
(deg/s) | Average yaw rate | 2.524 | 3.517 | 28.2 |
Symbol | Description | HPFSM | PFBM | |
---|---|---|---|---|
(m/s) | Maximum lateral acceleration | 0.293 | 2.410 | 87.8 |
(m/s) | Average lateral acceleration | 0.029 | 0.180 | 83.9 |
(deg/s) | Maximum yaw rate | 3.508 | 20.430 | 82.8 |
(deg/s) | Average yaw rate | 0.477 | 1.713 | 72.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; He, H.; Yu, H.; Wang, H.; Li, G.; Shi, M.; Cao, D. Hybrid Path Planning Combining Potential Field with Sigmoid Curve for Autonomous Driving. Sensors 2020, 20, 7197. https://doi.org/10.3390/s20247197
Lu B, He H, Yu H, Wang H, Li G, Shi M, Cao D. Hybrid Path Planning Combining Potential Field with Sigmoid Curve for Autonomous Driving. Sensors. 2020; 20(24):7197. https://doi.org/10.3390/s20247197
Chicago/Turabian StyleLu, Bing, Hongwen He, Huilong Yu, Hong Wang, Guofa Li, Man Shi, and Dongpu Cao. 2020. "Hybrid Path Planning Combining Potential Field with Sigmoid Curve for Autonomous Driving" Sensors 20, no. 24: 7197. https://doi.org/10.3390/s20247197
APA StyleLu, B., He, H., Yu, H., Wang, H., Li, G., Shi, M., & Cao, D. (2020). Hybrid Path Planning Combining Potential Field with Sigmoid Curve for Autonomous Driving. Sensors, 20(24), 7197. https://doi.org/10.3390/s20247197