Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design Description
2.2. Experimental Setup for Studying the THz Emission to Open Space
2.3. Calibration of the Emission Power
2.4. Experimental Setup for Gas Spectroscopy
3. Results and Discussion
3.1. Emission Power
3.2. Absorption Lines of Water and Ammonia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Kumar, S. Recent Progress in Terahertz Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 2010, 17, 38–47. [Google Scholar] [CrossRef]
- Bosco, L.; Franckié, M.; Scalari, G.; Beck, M.; Wacker, A.; Faist, J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 2019, 115, 010601. [Google Scholar] [CrossRef]
- Özyüzer, L.; Koshelev, A.E.; Kurter, C.; Gopalsami, N.; Li, Q.; Tachiki, M.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; et al. Emission of Coherent THz Radiation from Superconductors. Science 2007, 318, 1291–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Yuan, J.; Kinev, N.; Li, J.; Gross, B.; Guénon, S.; Ishii, A.; Hirata, K.; Hatano, T.; Koelle, D.; et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 2012, 86, 060505. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.Y.; Ji, M.; Yuan, J.; An, D.Y.; Li, M.Y.; Zhou, X.J.; Huang, Y.; Sun, H.C.; Zhu, Q.; Rudau, F.; et al. Compact Superconducting Terahertz Source Operating in Liquid Nitrogen. Phys. Rev. Appl. 2015, 3, 024006. [Google Scholar] [CrossRef]
- Zhou, X.J.; Yuan, J.; Wu, H.; Gao, Z.S.; Ji, M.; An, D.Y.; Huang, Y.; Rudau, F.; Wieland, R.; Gross, B.; et al. Tuning the Terahertz Emission Power of an Intrinsic Josephson-Junction Stack with a Focused Laser Beam. Phys. Rev. Appl. 2015, 3, 044012. [Google Scholar] [CrossRef]
- Kakeya, I.; Wang, H. Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: A review on recent progress. Supercond. Sci. Technol. 2016, 29, 073001. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Kubo, H.; Sakamoto, K.; Yuasa, T.; Tanabe, Y.; Watanabe, C.; Tanaka, T.; Komori, Y.; Ota, R.; Kuwano, G.; et al. The present status of high-Tcsuperconducting terahertz emitters. Supercond. Sci. Technol. 2017, 30, 074008. [Google Scholar] [CrossRef]
- Suzuki, S.; Asada, M.; Teranishi, A.; Sugiyama, H.; Yokoyama, H. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 2010, 97, 242102. [Google Scholar] [CrossRef]
- Feiginov, M.; Kanaya, H.; Suzuki, S.; Asada, M. Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz. Appl. Phys. Lett. 2014, 104, 243509. [Google Scholar] [CrossRef]
- Endres, C.P.; Lewen, F.; Giesen, T.F.; Schlemmer, S.; Paveliev, D.G.; Koschurinov, Y.I.; Ustinov, V.M.; Zhucov, A.E. Application of superlattice multipliers for high-resolution terahertz spectroscopy. Rev. Sci. Instrum. 2007, 78, 043106. [Google Scholar] [CrossRef]
- Paveliev, D.G.; Koshurinov, Y.I.; Ivanov, A.S.; Panin, A.N.; Vax, V.L.; Gavrilenko, V.I.; Antonov, A.V.; Ustinov, V.M.; Zhukov, A.E. Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range. Semiconductors 2012, 46, 121–125. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Enpuku, K.; Irie, F.; Yoshida, K. Flux-flow type Josephson oscillator for millimeter and submillimeter wave region. J. Appl. Phys. 1983, 54, 3302–3309. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Enpuku, K.; Yoshida, K.; Irie, F. Flux-flow-type Josephson oscillator for millimeter and submillimeter wave region. II. Modeling. J. Appl. Phys. 1984, 56, 3284–3293. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Enpuku, K.; Sueoka, K.; Yoshida, K.; Irie, F. Flux-flow-type Josephson oscillator for millimeter and submillimeter wave region. III. Oscillation stability. J. Appl. Phys. 1985, 58, 441–449. [Google Scholar] [CrossRef]
- Qin, J.; Enpuku, K.; Yoshida, K. Flux-flow-type Josephson oscillator for millimeter and submillimeter wave region. IV. Thin-film coupling. J. Appl. Phys. 1988, 63, 1130–1135. [Google Scholar] [CrossRef]
- Maslennikov, Y.V.; Shitov, S.V.; Filippenko, L.; Baryshev, A.; Luinge, W.; Golstein, H.; van de Stadt, H.; Gao, J.R.; de Graauw, T. An integrated 500 GHz receiver with superconducting local oscillator. IEEE Trans. Appl. Supercond. 1997, 7, 3589–3592. [Google Scholar] [CrossRef]
- Koshelets, V.P.; Shitov, S.V. Integrated superconducting receivers. Supercond. Sci. Technol. 2000, 13, R53–R69. [Google Scholar] [CrossRef] [Green Version]
- Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.; Vaks, V.L.; Mygind, J.; Baryshev, A.M.; Luinge, W.; Whyborn, N. Phase locked 270–440 GHz local oscillator based on flux flow in long Josephson tunnel junctions. Rev. Sci. Instrum. 2000, 71, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Maslennikov, Y.V.; Shitov, S.V.; Dmitriev, P.; Ermakov, A.; Filippenko, L.; Khodos, V.; Vaks, V.; Baryshev, A.; Wesselius, P.; Mygind, J. Towards a phase-locked superconducting integrated receiver: Prospects and limitations. Phys. C Supercond. 2002, 367, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Maslennikov, Y.V.; Dmitriev, P.; Ermakov, A.; Sobolev, A.; Torgashin, M.; Kurin, V.; Pankratov, A.; Mygind, J. Optimization of the Phase-Locked Flux-Flow Oscillator for the submm Integrated Receiver. IEEE Trans. Appl. Supercond. 2005, 15, 964–967. [Google Scholar] [CrossRef]
- de Lange, G.; Birk, M.; Boersma, D.; Dercksen, J.; Dmitriev, P.; Ermakov, A.B.; Filippenko, L.V.; Golstein, H.; Hoogeveen, R.W.M.; de Jong, L.; et al. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder. Supercond. Sci. Technol. 2010, 23, 045016. [Google Scholar] [CrossRef]
- Maslennikov, Y.V.; de Lange, A.; de Lange, G.; Vaks, V.L.; Li, M.Y.; Wang, H.; Dmitriev, P.N.; I Faley, M.; Filippenko, L.V.; Kalashnikov, K.; et al. Superconducting Integrated Terahertz Spectrometers. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 687–694. [Google Scholar] [CrossRef]
- Kinev, N.V.; Rudakov, K.I.; Filippenko, L.V.; Baryshev, A.M.; Maslennikov, Y.V. Flux-flow Josephson oscillator as the broadband tunable terahertz source to open space. J. Appl. Phys. 2019, 125, 151603. [Google Scholar] [CrossRef]
- Kinev, N.V.; Rudakov, K.I.; Filippenko, L.V.; Baryshev, A.M.; Maslennikov, Y.V. Terahertz Source Radiating to Open Space Based on the Superconducting Flux-Flow Oscillator: Development and Characterization. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 557–564. [Google Scholar] [CrossRef]
- Kinev, N.V.; Rudakov, K.I.; Baryshev, A.M.; Koshelets, V.P. Slot Lens Antenna Based on Thin Nb Films for the Wideband Josephson Terahertz Oscillator. Phys. Solid State 2018, 60, 2173–2177. [Google Scholar] [CrossRef]
- Kinev, N.V.; Rudakov, K.I.; Filippenko, L.V.; Baryshev, A.M.; Koshelets, V.P. An Antenna with a Feeder for a Superconducting Terahertz Josephson Oscillator with Phase Locking. J. Commun. Technol. Electron. 2019, 64, 1081–1086. [Google Scholar] [CrossRef]
- Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.; Filippenko, L.V.; Mygind, J.; Ustinov, A.V. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators. Phys. Rev. B 1997, 56, 5572–5577. [Google Scholar] [CrossRef] [Green Version]
- Maslennikov, Y.V.; Shitov, S.V.; Shchukin, A.; Filippenko, L.; Mygind, J. Linewidth of frequency locked flux flow oscillators for sub-mm wave receivers. IEEE Trans. Appl. Supercond. 1997, 7, 2905–2908. [Google Scholar] [CrossRef]
- Maslennikov, Y.V.; Dmitriev, P.; Sobolev, A.; Pankratov, A.; Khodos, V.; Vaks, V.; Baryshev, A.; Wesselius, P.; Mygind, J. Line width of Josephson flux flow oscillators. Phys. C Supercond. 2002, 372, 316–321. [Google Scholar] [CrossRef]
- Pankratov, A.L.; Sobolev, A.S.; Koshelets, V.P.; Mygind, J. Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction. Phys. Rev. B 2007, 75, 184516. [Google Scholar] [CrossRef] [Green Version]
- Kohjiro, S.; Wang, Z.; Shitov, S.V.; Miki, S.; Kawakami, A.; Shoji, A. Radiation power of NbN-based flux-flow oscillators for THz-band integrated SIS receivers. IEEE Trans. Appl. Supercond. 2003, 13, 672–675. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Shapiro, S. rf-Induced Effects in Superconducting Tunnel Junctions. Phys. Rev. B 1970, 2, 4494–4503. [Google Scholar] [CrossRef]
- Tucker, J.R.; Feldman, M.J. Quantum detection at millimeter wavelengths. Rev. Mod. Phys. 1985, 57, 1055–1113. [Google Scholar] [CrossRef]
- Kinev, N.V.; Filippenko, L.V.; Kalashnikov, K.V.; Kiselev, O.S.; Vaks, V.L.; Domracheva, E.G.; Koshelets, V.P. Superconducting integrated terahertz receiver for spectral analysis of gas compounds. J. Physics Conf. Ser. 2016, 741, 12169. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Z.; Kinev, N.V.; Kiselev, O.S.; Lv, Y.; Huang, Y.; Hao, L.; Zhou, X.; Ji, M.; Tu, X.; et al. Terahertz Spectroscopy of Dilute Gases Using Bi2Sr2CaCu2O8+δ Intrinsic Josephson-Junction Stacks. Phys. Rev. Appl. 2017, 8, 054005. [Google Scholar] [CrossRef]
- Sobakinskaya, E.; Vaks, V.L.; Kinev, N.; Ji, M.; Li, M.Y.; Wang, H.B.; Maslennikov, Y.V. High-resolution terahertz spectroscopy with a noise radiation source based on high-Tcsuperconductors. J. Phys. D Appl. Phys. 2016, 50, 35305. [Google Scholar] [CrossRef]
- Klein, N.; Lahl, P.; Poppe, U.; Kadlec, F.; Kužel, P. A metal-dielectric antenna for terahertz near-field imaging. J. Appl. Phys. 2005, 98, 014910. [Google Scholar] [CrossRef]
- Berta, M.; Kužel, P.; Kadlec, F. Study of responsiveness of near-field terahertz imaging probes. J. Phys. D Appl. Phys. 2009, 42, 155501. [Google Scholar] [CrossRef]
- Berta, M.; Kadlec, F. Near-field terahertz imaging of ferroelectric domains in barium titanate. Phase Transit. 2010, 83, 985–993. [Google Scholar] [CrossRef]
- Kersting, R.; Buersgens, F.F.; Acuna, G.P.; Cho, G.C. Terahertz Near-Field Microscopy. In Advances in Solid State Physics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2008; Volume 47, pp. 203–222. [Google Scholar]
- Hwang, Y.; Ahn, J.; Mun, J.; Bae, S.; Jeong, Y.U.; Vinokurov, N.A.; Kim, P. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy. Opt. Express 2014, 22, 11465–11475. [Google Scholar] [CrossRef] [PubMed]
- Filippenko, L.V.; Shitov, S.V.; Dmitriev, P.N.; Ermakov, A.B.; Koshelets, V.P.; Gao, J.-R. Submillimeter superconducting integrated receivers: Fabrication and yield. IEEE Trans. Appl. Supercond. 2001, 11, 816–819. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, P.N.; Lapitskaya, I.L.; Filippenko, L.V.; Ermakov, A.B.; Shitov, S.V.; Prokopenko, G.V.; Kovtonyuk, S.A.; Koshelets, V.P. High quality Nb-based tunnel junctions for high frequency and digital applications. IEEE Trans. Appl. Supercond. 2003, 13, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Faley, M.I.; Kostyurina, E.A.; Kalashnikov, K.; Maslennikov, Y.V.; Maslennikov, Y.V.; Dunin-Borkowski, R.E. Superconducting Quantum Interferometers for Nondestructive Evaluation. Sensors 2017, 17, 2798. [Google Scholar] [CrossRef] [Green Version]
- Mathcad Official Site. Older Versions of the Software Used in the Paper. Available online: https://support.ptc.com/support/mathcad_downloads.htm (accessed on 8 December 2020).
- Origin Pro Software Description. Available online: https://www.originlab.com/index.aspx?go=Products/Origin (accessed on 8 December 2020).
- Molecular Spectroscopy, Jet Propulsion Laboratory (JPL). JPL Catalog Search Form. Available online: https://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html (accessed on 13 November 2020).
- High-Resolution Transmission Molecular Absorption Database. Available online: https://hitran.org/home/ (accessed on 13 December 2020).
- Leahy-Hoppa, M.R.; Fitch, M.J.; Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 2009, 395, 247–257. [Google Scholar] [CrossRef]
- Bylander, J.; Gustavsson, S.; Yan, F.; Yoshihara, F.; Harrabi, K.; Fitch, G.; Cory, D.G.; Nakamura, Y.; Tsai, J.-S.; Oliver, W.D. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 2011, 7, 565–570. [Google Scholar] [CrossRef]
- Consolino, L.; Bartalini, S.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; de Natale, P. THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing. Sensors 2013, 13, 3331–3340. [Google Scholar] [CrossRef] [Green Version]
- Gerecht, E.; Douglass, K.O.; Plusquellic, D. Chirped-pulse terahertz spectroscopy for broadband trace gas sensing. Opt. Express 2011, 19, 8973–8984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of a Terahertz Source | ||||||
---|---|---|---|---|---|---|
Properties | Backward Wave Oscillators | Multipliers Based on Schottky Diodes | Quantum Cascade Lasers | Photo-Mixers | High-Tc Josephson Oscillators | Low-Tc Josephson FFOs |
Typical operating frequencies | 0.1–1.5 THz | up to ~2 THz | 1.5–6 THz | up to 2 THz | ~0.5 to 1 THz | 250–900 GHz 1 |
Tuning bandwidth related to carrier frequency | up to 30% | ~20 to 30% | 0.1–10% | 100% | up to 50% | up to 80% |
Typical power | up to tens of mW | up to several mW | up to 1 mW | tens of nW–several µW | up to tens of µW | tens of nW–several µW |
Operating temperatures | ~293 K | ~293 K or cryogenic | 4.2–50 K | ~293 K or cryogenic | ~20 to 60 K | 4.2 K |
Main disadvantages | extremely large weight and power consumption | low harmonic efficiency above 1 THz | not available below 1 THz | for high power, pulse source are needed | wide spectral line, phase locking is still not available | extremely sensitive to temperature changes and external field |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinev, N.V.; Rudakov, K.I.; Filippenko, L.V.; Baryshev, A.M.; Koshelets, V.P. Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver. Sensors 2020, 20, 7267. https://doi.org/10.3390/s20247267
Kinev NV, Rudakov KI, Filippenko LV, Baryshev AM, Koshelets VP. Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver. Sensors. 2020; 20(24):7267. https://doi.org/10.3390/s20247267
Chicago/Turabian StyleKinev, Nickolay V., Kirill I. Rudakov, Lyudmila V. Filippenko, Andrey M. Baryshev, and Valery P. Koshelets. 2020. "Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver" Sensors 20, no. 24: 7267. https://doi.org/10.3390/s20247267
APA StyleKinev, N. V., Rudakov, K. I., Filippenko, L. V., Baryshev, A. M., & Koshelets, V. P. (2020). Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver. Sensors, 20(24), 7267. https://doi.org/10.3390/s20247267