Gamma-Ray Spectral Unfolding of CdZnTe-Based Detectors Using a Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Algorithm
- production the first generation of individuals (initialization)
- selection of individuals for mating (selection)
- generation of new individuals (crossover)
- modification of the genome (mutation)
2.2. Experimental Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RTSD | Room Temperature Semiconductor Detector |
GA | Genetic Algorithm |
CZT | Cadmium Zinc Telluride |
RSS | Residual Sum of Squares |
CSP | Charge Sensing Preamplifier |
PPE | PhotoPeak Enhancement |
References
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Aleotti, J.; Micconi, G.; Caselli, S.; Benassi, G.; Zambelli, N.; Bettelli, M.; Zappettini, A. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface. Sensors 2017, 17, 2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbene, L.; Gerardi, G.; Turturici, A.; Raso, G.; Benassi, G.; Bettelli, M.; Zambelli, N.; Zappettini, A.; Principato, F. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 1–12. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Raso, G.; Principato, F.; Zambelli, N.; Benassi, G.; Bettelli, M.; Zappettini, A. Development of new CdZnTe detectors for room-temperature high-flux radiation measurements. J. Synchrotron Radiat. 2017, 24, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; He, Z.; Xu, D. Analysis of detector response using 3-D position-sensitive CZT gamma-ray spectrometers. IEEE Trans. Nucl. Sci. 2004, 51, 3098–3104. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Gu, Y.; Reynolds, P.D.; Levin, C.S. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system. Phys. Med. Biol. 2016, 61, 6733–6753. [Google Scholar] [CrossRef]
- Bouchet, L. A comparative study of deconvolution methods for gamma-ray spectra. Astron. Astrophys. Suppl. 1995, 113, 167–183. [Google Scholar]
- Nelson, K.E.; Monteral, M.; USDOE National Nuclear Security Administration (NNSA). Benchmark Algorithm for RadioNuclide Identification v1.0, Version 1; USDOE National Nuclear Security Administration (NNSA): Washington, DC, USA, 2019. [CrossRef]
- Hubbell, J.H.; Scofield, N.E. Unscrambling of Gamma-Ray Scintillation Spectrometer Pulse-Height Distributions. IRE Trans. Nucl. Sci. 1958, 5, 156–158. [Google Scholar] [CrossRef]
- Perey, F.G. Least-Squares Dosimetry Unfolding: The Program STAY’SL; Technical Report 9374132; Oak Ridge National Lab., Tenn. (USA): Oak Ridge, TN, USA, 1977. [Google Scholar]
- Routti, J.T.; Sandberg, J.V. General purpose unfolding program LOUHI78 with linear and nonlinear regularizations. Comput. Phys. Commun. 1980, 21, 119–144. [Google Scholar] [CrossRef]
- Sanna, R.; O’Brien, K. Monte-Carlo unfolding of neutron spectra. Nucl. Instrum. Methods 1971, 91, 573–576. [Google Scholar] [CrossRef]
- O’Brien, K.; Sanna, R. Neutron spectral unfolding using the Monte Carlo method. Nucl. Instrum. Methods Phys. Res. 1981, 185, 277–286. [Google Scholar] [CrossRef]
- Su, Y. Study of scintillation spectrometry: Unfolding methods. Nucl. Instrum. Methods 1967, 54, 109–115. [Google Scholar] [CrossRef]
- Guttormsen, M.; Tveter, T.S.; Bergholt, L.; Ingebretsen, F.; Rekstad, J. The unfolding of continuum γ-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1996, 374, 371–376. [Google Scholar] [CrossRef]
- Bandžuch, P.; Morháč, M.; Krištiak, J. Study of the Van Cittert and Gold iterative methods of deconvolution and their application in the deconvolution of experimental spectra of positron annihilation. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1997, 384, 506–515. [Google Scholar] [CrossRef]
- Beach, S.M.; DeWerd, L.A. Deconvolution and reconstruction techniques of closely spaced low-energy spectra from high-purity germanium spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2007, 572, 794–803. [Google Scholar] [CrossRef]
- Morháč, M.; Matoušek, V. Complete positive deconvolution of spectrometric data. Digit. Signal Process. Rev. J. 2009, 19, 372–392. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Lei, J.; An, L.; Zhang, X.; Shao, J.; Zheng, P.; Wang, X. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method. Sci. China Phys. Mech. Astron. 2014, 57, 1885–1890. [Google Scholar] [CrossRef] [Green Version]
- Tichy, M. Bayesian approach to neutron spectrum adjustment. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1988, 267, 502–508. [Google Scholar] [CrossRef]
- Reginatto, M.; Goldhagen, P.; Neumann, S. Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 476, 242–246. [Google Scholar] [CrossRef]
- Medkour Ishak-Boushaki, G.; Allab, M. Comparison between standard unfolding and Bayesian methods in Bonner spheres neutron spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2012, 689, 35–39. [Google Scholar] [CrossRef]
- Koohi-Fayegh, R.; Green, S.; Crout, N.; Taylor, G.; Scott, M. Neural network unfolding of photon and neutron spectra using an NE-213 scintillation detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1993, 329, 269–276. [Google Scholar] [CrossRef]
- R. Kardan, M.; Setayeshi, S.; Koohi-Fayegh, R.; Ghiassi-Nejad, M. Neutron spectra unfolding in Bonner spheres spectrometry using neural networks. Radiat. Prot. Dosim. 2003, 104, 27–30. [Google Scholar] [CrossRef]
- Avdic, S.; Pozzi, S.A.; Protopopescu, V. Detector response unfolding using artificial neural networks. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2006, 565, 742–752. [Google Scholar] [CrossRef]
- Yan, J.; Liu, R.; Li, C.; Jiang, L.; Wang, M. Application of artificial neural networks for unfolding neutron spectra by using a scintillation detector. Sci. China Physics, Mech. Astron. 2011, 54, 465–469. [Google Scholar] [CrossRef]
- Mukherjee, B. BONDI-97: A novel neutron energy spectrum unfolding tool using a genetic algorithm. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1999, 432, 305–312. [Google Scholar] [CrossRef]
- Suman, V.; Sarkar, P.K. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation. Nucl. Inst. Methods Phys. Res. A 2014, 737, 76–86. [Google Scholar] [CrossRef]
- Bettelli, M.; Benassi, G.; Nasi, L.; Zambelli, N.; Zappettini, A.; Gombia, E.; Abbene, L.; Principato, F.; Calestani, D. Mechanically stable metal layers for ohmic and blocking contacts on CdZnTe detectors by electroless deposition. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions. J. Instrum. 2017, 12. [Google Scholar] [CrossRef]
- Bettelli, M.; Sarzi Amadè, N.; Calestani, D.; Garavelli, B.; Pozzi, P.; Macera, D.; Zanotti, L.; Gonano, C.A.; Veale, M.C.; Zappettini, A. A first principle method to simulate the spectral response of CdZnTe-based X- and gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2020, 960, 163663. [Google Scholar] [CrossRef]
- Bé, M.M.; Chisté, V.; Dulieu, C.; Kellett, M.; Mougeot, X.; Arinc, A.; Chechev, V.; Kuzmenko, N.; Kibédi, T.; Luca, A.; et al. Table of Radionuclides; Monographie BIPM-5; Bureau International des Poids et Mesures: Pavillon de Breteuil, France, 2016; Volume 8. [Google Scholar]
- Lépy, M.; Plagnard, J.; Ferreux, L. Measurement of 241Am L X-ray emission probabilities. Appl. Radiat. Isot. 2008, 66, 715–721. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Size of the population | 50 | |
Crossover probability | 0.8 | |
Mutation probability | 0.01 | |
w | Crossover weight | 0.3 |
m | Mutation upper bound | 3 |
Isotope | Detector | RSS | PPE |
---|---|---|---|
Drift strip | 64.8 | ||
Drift strip | 17.6 | ||
Single pixel | 12.0 | ||
Single pixel | 4.9 |
Standard GA | Seeding GA | ||||
---|---|---|---|---|---|
N of Generations | RSS | Av. Running Time (ms) | N of Generations | RSS | Av. Running Time (ms) |
50 | 84 | 50 | 85 | ||
100 | 157 | 100 | 158 | ||
200 | 313 | 200 | 316 | ||
500 | 780 | 500 | 785 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarzi Amadè, N.; Bettelli, M.; Zambelli, N.; Zanettini, S.; Benassi, G.; Zappettini, A. Gamma-Ray Spectral Unfolding of CdZnTe-Based Detectors Using a Genetic Algorithm. Sensors 2020, 20, 7316. https://doi.org/10.3390/s20247316
Sarzi Amadè N, Bettelli M, Zambelli N, Zanettini S, Benassi G, Zappettini A. Gamma-Ray Spectral Unfolding of CdZnTe-Based Detectors Using a Genetic Algorithm. Sensors. 2020; 20(24):7316. https://doi.org/10.3390/s20247316
Chicago/Turabian StyleSarzi Amadè, Nicola, Manuele Bettelli, Nicola Zambelli, Silvia Zanettini, Giacomo Benassi, and Andrea Zappettini. 2020. "Gamma-Ray Spectral Unfolding of CdZnTe-Based Detectors Using a Genetic Algorithm" Sensors 20, no. 24: 7316. https://doi.org/10.3390/s20247316
APA StyleSarzi Amadè, N., Bettelli, M., Zambelli, N., Zanettini, S., Benassi, G., & Zappettini, A. (2020). Gamma-Ray Spectral Unfolding of CdZnTe-Based Detectors Using a Genetic Algorithm. Sensors, 20(24), 7316. https://doi.org/10.3390/s20247316