Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Optimization of System Parameters in Laboratory
3.2. Shallow Sea Experiments
3.3. Preliminary Results in sea Trials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blair, T.; Tomoko, T.; Takumi, S.; Tetsuo, S.; Ayaka, T.; Ayumu, M.; Tatsuo, N.; Toshihiko, O.; Ohki, K. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 95, 20–36. [Google Scholar]
- Wang, Z.; Dong, F.; Zhou, W. A rising force for the world-wide development of laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2015, 17, 617–620. [Google Scholar] [CrossRef]
- Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Choo, K.L.; Ogawa, Y.; Kanbargi, G.; Otra, V.; Raff, L.M.; Komanduri, R. Micromachining of silicon by short-pulse laser ablation in air and under water. Mater. Sci. Eng. A 2004, 372, 145–162. [Google Scholar] [CrossRef]
- Lee, T.; Luo, W.; Li, Q.; Demirci, H.; Guo, L.J. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel. Small 2017, 13, 1701555. [Google Scholar] [CrossRef] [PubMed]
- Meslin, P.Y.; Gasnault, O.; Forni, O.; Schröder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science 2013, 341, 6153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachon, M.; Clegg, S.M.; Mangold, N.; Schröder, S.; Kah, L.C.; Dromart, G.; Ollila, A.; Johnson, J.R.; Oehler, D.Z.; Bridges, J.C.; et al. Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. J. Geophys. Res. Planets 2014, 119, 1991–2016. [Google Scholar] [CrossRef] [Green Version]
- Maurice, S.; Clegg, S.M.; Wiens, R.C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Sautter, V.; Mangold, N.; le Deit, L.; et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. Atomic Spectrom. 2016, 31, 863–889. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser-induced breakdown in aqueous media. Progress Quantum Electr. 1997, 21, 155–248. [Google Scholar] [CrossRef]
- de Giacomo, A.; Dell’Aglio, M.; de Pascale, O. Single pulse-laser induced breakdown spectroscopy in aqueous solution. Appl. Phys. A 2004, 79, 1035–1038. [Google Scholar] [CrossRef]
- de Giacomo, A.; Dell’Aglio, M.; Colao, F.; Fantoni, R.; Lazic, V. Double-pulse LIBS in bulk water and on submerged bronze samples. Appl. Surf. Sci. 2005, 247, 157–162. [Google Scholar] [CrossRef]
- Sakka, T.; Oguchi, H.; Masai, S.; Hirata, K.; Ogata, Y.H.; Saeki, M.; Ohba, H. Use of a long-duration ns pulse for efficient emission of spectral lines from the laser ablation plume in water. Appl. Phys. Lett. 2006, 88, 061120. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xue, B.; Song, J.; Lu, Y.; Zheng, R. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection. Appl. Phys. Lett. 2015, 107, 111107. [Google Scholar] [CrossRef]
- Hou, H.; Tian, Y.; Li, Y.; Zheng, R. Study of pressure effects on laser induced plasma in bulk seawater. J. Anal. Atomic Spectrom. 2014, 29, 169–175. [Google Scholar] [CrossRef]
- Hou, H.; Li, Y.; Tian, Y.; Yu, Z.; Zheng, R. Plasma condensation effect by ambient pressure in laser induced breakdown spectroscopy. Appl. Phys. Express 2014, 7, 032402. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Wang, L.; Huang, F.; Lu, Y.; Guo, J.; Zheng, R. Laser-induced plasma in water at high pressures up to 40 MPa: A time-resolved study. Opt. Express 2020, 28, 18122–18130. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Li, Y.; Lu, Y.; Guo, J.; Ye, W.; Zheng, R. Spectral characteristics of underwater laser-induced breakdown spectroscopy under high-pressure conditions. Plasma Sci. Technol. 2020, 22, 074004. [Google Scholar] [CrossRef]
- Jabbar, A.; Hou, Z.; Liu, J.; Ahmed, R.; Mahmood, S.; Wang, Z. Calibration-free analysis of immersed metal alloys using long-pulse-duration laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 157, 84–90. [Google Scholar] [CrossRef]
- Li, Q.; Tian, Y.; Xue, B.; Li, N.; Ye, W.; Lu, Y.; Zheng, R. Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information. J. Anal. At. Spectrom. 2020, 35, 366–376. [Google Scholar] [CrossRef]
- Guirado, S.; Fortes, F.J.; Lazic, V.; Laserna, J.J. Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea. Spectrochim. Acta Part B At. Spectrosc. 2012, 74, 137–143. [Google Scholar] [CrossRef]
- Guirado, S.; Fortes, F.J.; Laserna, J.J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system. Talanta 2015, 137, 182–188. [Google Scholar] [CrossRef]
- Thornton, B.; Masamura, T.; Takahashi, T.; Ura, T.; Ohki, K.; Sakka, T. Development and field testing of laser-induced breakdown spectroscopy for in situ multi-element analysis at sea. In Proceedings of the 2012 Oceans, Salt Lake City, UT, USA, 20–24 February 2012; pp. 1–6. [Google Scholar]
- Thornton, B.; Sakka, T.; Takahashi, T.; Tamura, A.; Matsumoto, A.; Ura, T. Laser-induced breakdown spectroscopy for in situ chemical analysis at sea. In Proceedings of the 2013 IEEE International Underwater Technology Symposium, Tokyo, Japan, 5–8 March 2013; pp. 1–7. [Google Scholar]
- Takahashi, T.; Yoshino, S.; Takaya, Y.; Nozaki, T.; Ohki, K.; Ohki, T.; Sakka, T.; Blair, T. Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 103232. [Google Scholar] [CrossRef]
- Guo, J.; Lu, Y.; Cheng, K.; Song, J.; Ye, W.; Li, N.; Zheng, R. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials. Appl. Opt. 2017, 56, 8196–8200. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Guo, J.; Li, N.; Qi, F.; Cheng, K.; Zheng, R. Depth Profiling Investigation of Seawater Using Combined Multi-Optical Spectrometry. Appl. Spectrosc. 2020, 74, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xue, B.; Song, J.; Lu, Y.; Li, Y.; Zheng, R. Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532-and 1064-nm lasers. Appl. Phys. Express 2017, 10, 072401. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L.; Xue, B.; Chen, Q.; Li, Y. Laser focusing geometry effects on laser-induced plasma and laser-induced breakdown spectroscopy in bulk water. J. Anal. At. Spectrom. 2019, 34, 118–126. [Google Scholar] [CrossRef]
- Tian, Y.; Xue, B.; Song, J.; Lu, Y.; Zheng, R. Stabilization of laser-induced plasma in bulk water using large focusing angle. Appl. Phys. Lett. 2016, 109, 061104.1–061104.5. [Google Scholar] [CrossRef]
- Song, J.; Guo, J.; Tian, Y.; Xue, B.; Lu, Y.; Zheng, R. Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements. Appl. Opt. 2018, 57, 1640–1644. [Google Scholar] [CrossRef]
- Baek, S.J.; Park, A.; Ahn, Y.J.; Choo, J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 2015, 140, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.; Amans, D.; Chaput, F.; Diouf, M.; Ledoux, G.; Mary, N.; Masenelli-Varlot, K.; Motto-Ros, V.; Dujardin, C. γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: A plasma analysis. Phys. Chem. Chem. Phys. 2014, 16, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Guo, J.; Zhu, L.; Lu, Y.; Tian, Y.; Zheng, R. Effects of Ambient Temperature on Laser-Induced Plasma in Bulk Water. Appl. Spectrosc. 2019, 73, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Guo, J.; Zhang, C.; Zhang, Y.; Li, Q.; Tian, Y.; Zheng, R. Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy. Appl. Opt. 2019, 58, 3886–3891. [Google Scholar] [CrossRef]
- Pearse, R.W.B.; Gaydon, A.G. Identification of Molecular Spectra; Chapman and Hall: London, UK, 1976. [Google Scholar]
- Gaydon, A.G. Green and orange band spectra of CaOH, CaOD and calcium oxide. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1955, 231, 437–445. [Google Scholar]
- Tian, Y.; Hou, S.; Wang, L.; Duan, X.; Xue, B.; Lu, Y.; Guo, J.; Li, Y. CaOH Molecular Emissions in Underwater Laser-Induced Breakdown Spectroscopy: Spatial–Temporal Characteristics and Analytical Performances. Anal. Chem. 2019, 91, 13970–13977. [Google Scholar] [CrossRef] [PubMed]
Module | Apparatus | Specifications |
---|---|---|
Mechanics | Pressure vessel | 7075 Aluminum alloy, anodized surface 588 × 190/length (mm) × diameter (mm) 28 kg (12 kg)/weight in air(water) 50 MPa/pressure proof 62.5 MPa/hydrostatic pressure |
Optics | Laser: (Montfort, M-NANO) | 1064 nm, Nd:YAG ≤40 mJ/pulse energy 2–25 Hz/adjustable repetition rate 10 ns/pulse width 258 × 78 × 64/dimension (mm3) |
Spectrometer: (Avantes, AvaSpec-Mini2048) | 260–800 nm/wavelength range 0.63 nm/spectral resolution 1280 ns/minimum detection delay 1 ms/minimum integration time 120 × 90 × 35/dimension (mm3) | |
Optical window | Fused silica 19 × 16.35/diameter (mm) × thickness (mm) 15 mm/focal length 50 MPa /pressure proof 62.5 MPa/hydrostatic pressure | |
Layout | Confocal collection | |
Electronics | Power supply | 110 V AC/48 V DC from ROV |
Delay generator | 800–4400 ns/Q-Switch out from laser | |
Microcomputer | PC 104/Advantech PCM-3363 | |
Communication | Ethernet/USB/RS232/RS485 Remote desktop connection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Guo, J.; Tian, Y.; Zhang, C.; Cheng, K.; Ye, W.; Zheng, R. Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater. Sensors 2020, 20, 7341. https://doi.org/10.3390/s20247341
Liu C, Guo J, Tian Y, Zhang C, Cheng K, Ye W, Zheng R. Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater. Sensors. 2020; 20(24):7341. https://doi.org/10.3390/s20247341
Chicago/Turabian StyleLiu, Chunhao, Jinjia Guo, Ye Tian, Chao Zhang, Kai Cheng, Wangquan Ye, and Ronger Zheng. 2020. "Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater" Sensors 20, no. 24: 7341. https://doi.org/10.3390/s20247341
APA StyleLiu, C., Guo, J., Tian, Y., Zhang, C., Cheng, K., Ye, W., & Zheng, R. (2020). Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater. Sensors, 20(24), 7341. https://doi.org/10.3390/s20247341