Framework for Structural Health Monitoring of Steel Bridges by Computer Vision
Abstract
:1. Introduction
2. Steel Bridge Structural Health Monitoring
2.1. The Issues of Monitoring Steel Bridges
2.2. Monitoring of Steel Bridge Constructions Using Computer Vision
2.3. Bridge Inspection Standards and Visual Markers Indicating Deterioration of Structural Elements
2.3.1. Markers of Structural Deterioration Feasible for Visual Inspections
3. Materials and Methods
3.1. Essentials
3.2. Method Application
3.3. Proposed Methodology
4. Results and Discussion
4.1. Image Acquisition
4.2. Beam Detection
4.3. Rivet Detection and Displacement Tracking
4.4. Rust Detection
4.5. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Yao, M.; Yao, X.; Xu, B. A real-time 3D scanning system for pavement distortion inspection. Meas. Sci. Technol. 2010, 21, 15702. [Google Scholar] [CrossRef]
- Yanaka, M.; Hooman Ghasemi, S.; Nowak, A.S. Reliability-based and life-cycle cost-oriented design recommendations for prestressed concrete bridge girders. Struct. Concr. 2016, 17, 836–847. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, L. Developing A Semi-Markov Process Model for Bridge Deterioration Prediction in Shanghai. Sustainability 2019, 11, 5524. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; El-Gohary, N. Learning from Class-Imbalanced Bridge and Weather Data for Supporting Bridge Deterioration Prediction. In Advances in Informatics and Computing in Civil and Construction Engineering; Springer: Heidelberg, Germany, 2019; pp. 749–756. [Google Scholar]
- Zambon, I.; Vidović, A.; Strauss, A.; Matos, J. Condition Prediction of Existing Concrete Bridges as a Combination of Visual Inspection and Analytical Models of Deterioration. Appl. Sci. 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowski, P.; Szulwic, J.; Miskiewicz, M. Deformation analysis of a composite bridge during proof loading using point cloud processing. Sensors 2018, 18, 4332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chroscielewski, J.; Miskiewicz, M.; Pyrzowski, L.; Rucka, M.; Sobczyk, B.; Wilde, K.; Meronk, B. Dynamic Tests and Technical Monitoring of a Novel Sandwich Footbridge. In Dynamics of Civil Structures, Volume 2; Springer: Heidelberg, Germany, 2020; pp. 55–60. [Google Scholar]
- Miskiewicz, M.; Pyrzowski, L.; Wilde, M. Dynamics of Civil Structures, Volume 2; Springer: Heidelberg, Germany, 2020; pp. 211–217. [Google Scholar]
- Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Rucka, M.; Sobczyk, B.; Wilde, K. Modal properties identification of a novel sandwich footbridge—Comparison of measured dynamic response and FEA. Compos. Part B Eng. 2018, 151, 245–255. [Google Scholar] [CrossRef]
- Rezaei, H.; Moayyedi, S.A.; Jankowski, R. Probabilistic seismic assessment of RC box-girder highway bridges with unequal-height piers subjected to earthquake-induced pounding. Bull. Earthq. Eng. 2019, 1–32. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q.; Ozer, E.; Fukuda, Y. A vision-based sensor for noncontact structural displacement measurement. Sensors 2015, 15, 16557–16575. [Google Scholar] [CrossRef]
- Ye, X.W.; Yi, T.H.; Dong, C.Z.; Liu, T. Vision-based structural displacement measurement: System performance evaluation and influence factor analysis. Meas. J. Int. Meas. Confed. 2016, 88, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.M.; Gonzalez, C.D.; Minguez, J.; Schumacher, T. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections. Sensors 2018, 18, 970. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, T.; Shariati, A. Monitoring of structures and mechanical systems using virtual visual sensors for video analysis: Fundamental concept and proof of feasibility. Sensors 2013, 13, 16551–16564. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Yu, Y.; Xu, X.; Hu, W.; Li, M.; Ou, J. Bridge displacement monitoring method based on laser projection-sensing technology. Sensors 2015, 15, 8444–8643. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Qader, I.; Yohali, S.; Abudayyeh, O.; Yehia, S. Segmentation of thermal images for non-destructive evaluation of bridge decks. NDT E Int. 2008, 41, 395–405. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Alirezaee, S.; Amirfattahi, R.; Sadri, S. Detection of steel defect using the image processing algorithms. In Proceedings of the 12th IEEE International Multitopic Conference (INMIC 2008), Karachi, Pakistan, 23–24 December 2008; pp. 125–127. [Google Scholar]
- Feng, D.; Feng, M.Q. Experimental validation of cost-effective vision-based structural health monitoring. Mech. Syst. Signal. Process. 2017, 88, 199–211. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.C.; Cho, S.; Sim, S.H. Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges. Sensors 2017, 17, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, L.S.; Simões, R.; Gervásio, H. Design of Steel Structures. In Design of Steel Structures; CRC Press: New York, NY, USA, 2014; pp. 1–438. ISBN 9783433604229. [Google Scholar]
- MacGinley, T.J. Structural Steel Design; Pearson: Boston, UK, 2018. [Google Scholar]
- Yan, W.; Xie, Z.; Yu, C.; Song, L.; He, H. Experimental investigation and design method for the shear strength of self-piercing rivet connections in thin-walled steel structures. J. Constr. Steel Res. 2017, 133, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Trahair, N.S.; Bradford, M.A. The Behaviour and Design of Steel Structures to as 4100: Australian; CRC Press: New York, NY, USA, 2017; ISBN 9781482271997. [Google Scholar]
- Zmetra, K.M.; McMullen, K.F.; Zaghi, A.E.; Wille, K. Experimental study of UHPC repair for corrosion-damaged steel girder ends. J. Bridg. Eng. 2017, 22, 4017037. [Google Scholar] [CrossRef]
- Benjamin, A. Graybeal Emerging UHPC-Based Bridge Construction and Preservation Solutions. In Proceedings of the AFGC-ACI-fib-RILEM International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), Montpellier, France, 2–4 October 2017; pp. 965–974. [Google Scholar]
- Darby, P.; Gopu, V. Bridge Inspecting with Unmanned Aerial Vehicles R & D. Available online: https://digitalcommons.lsu.edu/transet_pubs/14/ (accessed on 22 January 2020).
- González-Jorge, H.; Martínez-Sánchez, J.; Bueno, M.; Arias, P. Unmanned Aerial Systems for Civil Applications: A Review. Drones 2017, 1, 2. [Google Scholar] [CrossRef]
- Khan, F.; Ellenberg, A.; Mazzotti, M.; Kontsos, A.; Moon, F.; Pradhan, A.; Bartoli, I. Investigation on bridge assessment using unmanned aerial systems. In Proceedings of the 2015 Structures Congress Structures, Portland, OR, USA, 23–25 April 2015; pp. 404–413. [Google Scholar]
- Bajwa, A.S. Emerging Technologies & Their Adoption across US DOT’s: A Pursuit to Optimize Performance in Highway Infrastructure Project Delivery. Available online: https://kuscholarworks.ku.edu/handle/1808/27771 (accessed on 22 January 2020).
- Hiasa, S.; Karaaslan, E.; Shattenkirk, W.; Mildner, C.; Catbas, F.N. Bridge Inspection and Condition Assessment Using Image-Based Technologies with UAVs. In Structures Congress 2018: Bridges, Transportation Structures, and Nonbuilding Structures—Selected Papers from the Structures Congress 2018; American Society of Civil Engineers Reston: Reston, VA, USA, 2018; Volume 2018-April, pp. 217–228. [Google Scholar]
- Sanchez-Cuevas, P.J.; Ramon-Soria, P.; Arrue, B.; Ollero, A.; Heredia, G. Robotic system for inspection by contact of bridge beams using UAVs. Sensors 2019, 19, 305. [Google Scholar] [CrossRef] [Green Version]
- González-deSantos, L.M.; Martínez-Sánchez, J.; González-Jorge, H.; Ribeiro, M.; de Sousa, J.B.; Arias, P. Payload for Contact Inspection Tasks with UAV Systems. Sensors 2019, 19, 3752. [Google Scholar] [CrossRef] [Green Version]
- Burdziakowski, P. A Modern Approach to an Unmanned Vehicle Navigation. In Proceedings of the 16th International Multidiscip Scientific GeoConference (SGEM2016), Albena, Bulgaria, 30 June–6 July 2016; pp. 747–758. [Google Scholar] [CrossRef]
- Hu, C.; Xia, Y.; Zhang, J. Adaptive operator quantum-behaved pigeon-inspired optimization algorithm with application to UAV path planning. Algorithms 2019, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Avellar, G.S.C.; Pereira, G.A.S.; Pimenta, L.C.A.; Iscold, P. Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors 2015, 15, 27783–27803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisdale, J.; Kim, Z.; Hedrick, J. Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. 2009, 16, 35–42. [Google Scholar] [CrossRef]
- Jung, S. Development of Path Planning Tool for Unmanned System Considering Energy Consumption. Appl. Sci. 2019, 9, 3341. [Google Scholar] [CrossRef] [Green Version]
- Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.; Gupta, R. Health Monitoring of Civil Structures with Integrated UAV and Image Processing System. Procedia Comput. Sci. 2015, 54, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. Automatic detection of blurred images in UAV image sets. ISPRS J. Photogramm. Remote Sens. 2016, 122, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of reconstruction of the tree stem surface using terrestrial close-range photogrammetry. Remote Sens. 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Kahaki, S.M.M.; Nordin, M.D.J.; Ashtari, A.H. Incident detection algorithm based on radon transform using high-resolution remote sensing imagery. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics (ICEEI 2011), Bandung, Indonesia, 17–19 July 2011; pp. 1–5. [Google Scholar]
- Nayak, N.; Hegde, P.N.; Nayak, P.; Venugopala, P.S.; Kumaki, T. Morphological pattern spectrum based image manipulation detection. In Proceedings of the 7th IEEE International Advanced Computing Conference (IACC 2017), Hyderabad, India, 5–7 January 2017; pp. 596–599. [Google Scholar]
- Plaza, J.; Plaza, A.J.; Barra, C. Multi-channel morphological profiles for classification of hyperspectral images using support vector machines. Sensors 2009, 9, 196–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.M. Segmentation of apples in aerial images under sixteen different lighting conditions using color and texture for optimal irrigation. Water 2018, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Pujol, F.A.; Pujol, M.; Jimeno-Morenilla, A.; Pujol, M.J. Face detection based on skin color segmentation using fuzzy entropy. Entropy 2017, 19, 26. [Google Scholar] [CrossRef]
- Taqa, A.Y.; Jalab, H.A. Increasing the reliability of skin detectors. Sci. Res. Essays 2010, 5, 2480–2490. [Google Scholar]
- Atherton, T.J.; Kerbyson, D.J. Size invariant circle detection. Image Vis. Comput. 1999, 17, 795–803. [Google Scholar] [CrossRef]
- Yuen, H.; Princen, J.; Illingworth, J.; Kittler, J. Comparative study of Hough Transform methods for circle finding. Image Vis. Comput. 1990, 8, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.; Carrão, L.; Espanha, M.; Viana, T.; Freitas, D.; Bártolo, P.; Faria, P.; Almeida, H.A. Segmentation Algorithms for Thermal Images. Procedia Technol. 2014, 16, 1560–1569. [Google Scholar] [CrossRef]
- Borza, D.; Darabant, A.S.; Danescu, R. Eyeglasses lens contour extraction from facial images using an efficient shape description. Sensors 2013, 13, 13638–13658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamarra Acosta, M.R.; Vélez Díaz, J.C.; Schettini Castro, N. An innovative image-processing model for rust detection using Perlin Noise to simulate oxide textures. Corros. Sci. 2014, 88, 141–151. [Google Scholar] [CrossRef]
Parameter | θ = −1.5° | θ = −1.0° | θ = −0.5° | θ = 0.5° | θ = 1.0° | θ = 1.5° |
---|---|---|---|---|---|---|
N1 | −0.385 | 0.149 | −0.300 | 1.164 | 0.728 | −0.015 |
N2 | 0.705 | 0.397 | 0.231 | 0.309 | 0.152 | 0.059 |
N3 | −1.181 | −0.400 | -1.103 | −0.741 | −0.343 | −0.630 |
N4 | −0.160 | −0.355 | −0.452 | 0.134 | −0.830 | −0.546 |
N5 | 0.047 | 0.033 | −0.247 | 1.046 | 0.777 | 1.166 |
N6 | 0.588 | 0.852 | 0.441 | −0.505 | -1.064 | 0.408 |
N7 | −0.792 | −0.011 | −0.456 | 0.314 | 0.848 | −0.443 |
N8 | −0.930 | - | 0.458 | −0.479 | −0.828 | −0.828 |
N4 | −0.160 | −0.355 | −0.452 | 0.134 | −0.830 | −0.546 |
N5 | 0.047 | 0.033 | −0.247 | 1.046 | 0.777 | 1.166 |
N6 | 0.588 | 0.852 | 0.441 | −0.505 | -1.064 | 0.408 |
N7 | −0.792 | −0.011 | −0.456 | 0.314 | 0.848 | −0.443 |
N8 | −0,930 | - | 0.458 | −0.479 | −0.828 | −0.828 |
N9 | −0.721 | 0.455 | 0.136 | 0.109 | 0.431 | 0.513 |
N10 | 0.448 | −0.469 | −0.380 | −0.462 | −0.773 | - |
N11 | - | - | 0.488 | 0.380 | -1.211 | - |
N12 | - | - | - | −0.779 | 0.649 | - |
N13 | - | - | −0.374 | −0.752 | 0.391 | - |
N14 | - | - | −0.149 | −0.211 | −0.433 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchewka, A.; Ziółkowski, P.; Aguilar-Vidal, V. Framework for Structural Health Monitoring of Steel Bridges by Computer Vision. Sensors 2020, 20, 700. https://doi.org/10.3390/s20030700
Marchewka A, Ziółkowski P, Aguilar-Vidal V. Framework for Structural Health Monitoring of Steel Bridges by Computer Vision. Sensors. 2020; 20(3):700. https://doi.org/10.3390/s20030700
Chicago/Turabian StyleMarchewka, Adam, Patryk Ziółkowski, and Victor Aguilar-Vidal. 2020. "Framework for Structural Health Monitoring of Steel Bridges by Computer Vision" Sensors 20, no. 3: 700. https://doi.org/10.3390/s20030700
APA StyleMarchewka, A., Ziółkowski, P., & Aguilar-Vidal, V. (2020). Framework for Structural Health Monitoring of Steel Bridges by Computer Vision. Sensors, 20(3), 700. https://doi.org/10.3390/s20030700