Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup and Recordings
2.3. Functional Calibration and Test Movements
- -
- Calibration movement 1: “Tilted to stand”: Start in a leaned-back position with extended legs on the chair, bend the knees, bend the trunk forward, get up from the chair, and stop moving.
- -
- Calibration movement 2: “Extension stand up”: Sit on the chair, extend the knees in front of you, bend the knees, bend the trunk forward, get up from the chair, and stop moving.
- -
- Calibration movement 3: “Squat”: Stand in front of the chair, rise on your heels, squat deeply, get up, and stop moving.
- -
- Calibration movement 4: “Walking” 5 m:
- -
- 4a. Walk at your pace to the red line on the floor, then stop moving.
- -
- 4b. Fast: walk five meters as fast as you can without running to the red line on the floor as if you were late to a meeting.
- -
- 4c. Slow: walk five meters slowly to the red line on the floor but keep moving.
- walking five meters at a self-selected speed;
- stepping over an obstacle 28 cm in height while walking 5 m at a self-selected speed;
- ascend a step 20 cm in height;
- descend a step 20 cm in height.
2.4. Signal Processing
2.5. Data Analysis
3. Results
3.1. Assessment of the IMU Accuracy
3.2. Assessment of the IMU Reproducibility
3.3. Assessment of Accuracy in Different Test Movements
4. Discussion
4.1. Accuracy of Different Calibration Methods during Straight Walking
4.2. Reproducibility of Calibration Movements
4.3. Accuracy across Different Gait Movements
4.4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Figueiredo, J.; Santos, C.P.; Moreno, J.C. Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Med. Eng. Phys. 2018, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Boissy, P.; Blamoutier, M.; Briere, S.; Duval, C. Quantification of Free-Living Community Mobility in Healthy Older Adults Using Wearable Sensors. Front. Public Health 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: Accuracy assessment in manual and locomotion tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebel, K.; Boissy, P.; Hamel, M.; Duval, C. Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions—Changes in accuracy over time. PLoS ONE 2015, 10, e0118361. [Google Scholar] [CrossRef] [PubMed]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [Green Version]
- Van der Straaten, R.; De Baets, L.; Jonkers, I.; Timmermans, A. Mobile assessment of the lower limb kinematics in healthy persons and in persons with degenerative knee disorders: A systematic review. Gait Posture 2018, 59, 229–241. [Google Scholar] [CrossRef]
- Chèze, L. Analyse Cinématique du Mouvement Humain, 1st ed.; ISTE Group: London, UK, 2014. [Google Scholar]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [Green Version]
- Choe, N.; Zhao, H.; Qiu, S.; So, Y. A sensor-to-segment calibration method for motion capture system based on low cost MIMU. Measurement 2019, 131, 490–500. [Google Scholar] [CrossRef]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef]
- Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Favre, J.; Aissaoui, R.; Jolles, B.M.; de Guise, J.A.; Aminian, K. Functional calibration procedure for 3D knee joint angle description using inertial sensors. J. Biomech. 2009, 42, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Cutti, A.G.; Ferrari, A.; Garofalo, P.; Raggi, M.; Cappello, A.; Ferrari, A. ’Outwalk’: A protocol for clinical gait analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 2010, 48, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Laidig, D.; Müller, P.; Seel, T. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields. Curr. Dir. Biomed. Eng. 2017, 3. [Google Scholar] [CrossRef]
- Bouvier, B.; Duprey, S.; Claudon, L.; Dumas, R.; Savescu, A. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Sensors 2015, 15, 18813–18833. [Google Scholar] [CrossRef]
- Technologies, x.-o. x-Imu GUI. Available online: https://github.com/xioTechnologies/x-IMU-GUI (accessed on 4 December 2017).
- Technologies, x.-o. Open-Source-AHRS-With-x-IMU. Available online: https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/tree/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS (accessed on 4 December 2017).
- Wagner, J.M.; Rhodes, J.A.; Patten, C. Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Phys. Ther. 2008, 88, 652–663. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Lebleu, J.; Mahaudens, P.; Pitance, L.; Roclat, A.; Briffaut, J.B.; Detrembleur, C.; Hidalgo, B. Effects of ankle dorsiflexion limitation on lower limb kinematic patterns during a forward step-down test. J. Back Musculoskelet. Rehabil. 2018. [Google Scholar] [CrossRef]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS ONE 2019, 14, e0213064. [Google Scholar] [CrossRef] [Green Version]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [Green Version]
- Tadano, S.; Takeda, R.; Miyagawa, H. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. Sensors 2013, 13, 9321–9343. [Google Scholar] [CrossRef] [PubMed]
- Nuesch, C.; Roos, E.; Pagenstert, G.; Mundermann, A. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. J. Biomech. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebel, K.; Boissy, P.; Nguyen, H.; Duval, C. Inertial measurement systems for segments and joints kinematics assessment: Towards an understanding of the variations in sensors accuracy. Biomed. Eng. Online 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Lebel, K.; Boissy, P.; Hamel, M.; Duval, C. Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions—Effect of velocity. PLoS ONE 2013, 8, e79945. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Brennan, A.; Zhang, J.; Deluzio, K.; Li, Q. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal. Gait Posture 2011, 34, 320–323. [Google Scholar] [CrossRef]
- Bergmann, J.H.; Mayagoitia, R.E.; Smith, I.C. A portable system for collecting anatomical joint angles during stair ascent: A comparison with an optical tracking device. Dyn. Med. 2009, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Laudanski, A.; Brouwer, B.; Li, Q. Measurement of lower limb joint kinematics using inertial sensors during stair ascent and descent in healthy older adults and stroke survivors. J. Healthc. Eng. 2013, 4, 555–576. [Google Scholar] [CrossRef] [Green Version]
- Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture 2016, 51, 239–246. [Google Scholar] [CrossRef]
- Slajpah, S.; Kamnik, R.; Munih, M. Kinematics based sensory fusion for wearable motion assessment in human walking. Comput. Methods Programs Biomed. 2014, 116, 131–144. [Google Scholar] [CrossRef]
- Olsson, F.O.; Seel, T.; Lehmann, D.; Halvorsen, K. Joint axis estimation for fast and slow movements using weighted gyroscope and acceleration constraints. arXiv 2019, arXiv:1903.07353. [Google Scholar]
- Seel, T.; Schauer, T.; Raisch, J. Joint Axis and Position Estimation from Inertial Measurement Data by Exploiting Kinematic Constraints. In Proceedings of the IEEE International Conference on Control Applications, Dubrovnik, Croatia, 3–5 October 2012; pp. 45–49. [Google Scholar]
- Nowka, D.; Kok, M.; Seel, T. On Motions That Allow for Identification of Hinge Joint Axes from Kinematic Constraints and 6D IMU Data. In Proceedings of the 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 4325–4331. [Google Scholar]
Accuracy Indicator | RMSE (°) | ∆ROM (°) | DRIFT (°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calibration Factor | Functional Calibration Movement | Segment Reference Frame | Optical Functional Calibration | Functional Calibration Movement | Segment Reference Frame | Optical Functional Calibration | Functional Calibration Movement | Segment Reference Frame | Optical Functional Calibration | ||||
Mean (SD) | Mean Difference between Methods | Mean (SD) | Mean Difference between Methods | Mean (SD) | Mean Difference between Methods | ||||||||
Pelvis | Sagittal | 0.9 (0.5) | - | - | - | 0.4 (0.6) | 1.0 | - | - | 0.4 (0.6) | - | - | - |
Frontal | 1.1 (0.9) | 1.3 | - | - | 0.5 (0.7) | 1.1 | - | - | 0.5 (0.7) | - | - | - | |
Transverse | 1.5 (1.8) | - | - | - | 0.2 (0.2) | - | - | - | 0.2 (0.2) | - | - | - | |
Hip right | Sagittal | 2.0 (1.2) | - | - | - | 1.6 (1.6) | - | 1.0 | - | 1.6 (1.6) | - | - | - |
Frontal | 2.7 (2.1) | - | - | - | 2.3 (1.5) | - | - | - | 2.3 (1.5) | - | - | - | |
Transverse | 2.4 (1.5) | - | - | - | 2.2 (1.3) | - | - | - | 2.2 (1.3) | - | - | - | |
Knee right | Sagittal | 4.1 (3.1) | - | 1.5 | - | 2.4 (3.8) | 3.9 | - | - | 2.4 (3.8) | 1.2 | - | - |
Frontal | 3.6 (2.3) | 4.0 | - | - | 4.7 (6.4) | 9.2 | - | - | 4.7 (6.4) | - | - | - | |
Transverse | 3.3 (2.1) | - | 2.4 | - | 3.2 (5.2) | 4.3 | 3.1 | - | 3.2 (5.2) | - | - | - | |
Ankle right | Sagittal | 2.5 (1.7) | - | 0.9 | - | 2.7 (5.1) | - | - | - | 2.7 (5.1) | - | - | - |
Frontal | 3.3 (2.5) | 3.7 | - | 4.2 (5.6) | 7.2 | - | - | 4.2 (5.6) | - | - | 0.5 | ||
Transverse | 2.4 (4.3) | 4.3 | 2.6 | - | 5.1 (6.6) | 5.6 | 2.8 | - | 5.1 (6.6) | 2.0 | 1.0 | - | |
Hip left | Sagittal | 2.5 (0.8) | - | - | - | 0.8 (0.7) | - | - | - | 0.8 (0.7) | - | - | - |
Frontal | 2.1 (1.6) | - | - | - | 1.9 (1.7) | - | - | - | 1.9 (1.7) | - | - | - | |
Transverse | 2.1 (1.6) | - | - | - | 2.0 (1.8) | 1.9 | 0.6 | - | 2.0 (1.8) | - | - | - | |
Knee left | Sagittal | 3.7 (3.5) | - | 1.9 | - | 1.9 (3.6) | - | - | - | 1.9 (3.6) | - | - | - |
Frontal | 3.5 (1.7) | 1.9 | - | - | 4.3 (4.0) | 4.9 | - | - | 4.3 (4.0) | - | - | - | |
Transverse | 3.0 (1.6) | - | 1.4 | - | 2.7 (3.9) | 3.0 | 2.6 | - | 2.7 (4.0) | - | - | - | |
Ankle left | Sagittal | 3.2 (1.5) | - | - | - | 2.3 (4.0) | 4.6 | 2.2 | - | 2.3 (4.0) | - | - | - |
Frontal | 2.9 (1.6) | 2.8 | - | - | 3.6 (3.9) | 3.8 | - | - | 3.6 (3.9) | - | - | - | |
Transverse | 3.2 (4.3) | 4.8 | 2.4 | - | 3.6 (5.1) | 6.7 | 2.0 | - | 3.6 (5.1) | - | - | - |
RMSE (°) | ∆ROM (°) | DRIFT (°) | ||
---|---|---|---|---|
Mean (SD) | ||||
Pelvis | Sagittal | 1.0 (0.7) | 0.7 (0.8) | 0.4 (0.6) |
Frontal | 1.2 (1.1) | 0.7 (0.9) | 0.5 (0.4) | |
Transverse | 1.5 (1.8) | 0.2 (0.2) | 0.2 (0.2) | |
Hip right | Sagittal | 2.1 (1.3) | 1.0 (1.0) | 1.6 (1.6) |
Frontal | 2.9 (2.2) | 2.0 (1.7) | 2.3 (1.6) | |
Transverse | 2.2 (1.5) | 1.7 (1.1) | 2.1 (1.3) | |
Knee right | Sagittal | 3.6 (2.5) | 1.1 (0.6) | 1.9 (1.8) |
Frontal | 2.8 (1.6) | 2.5 (2.3) | 4.0 (5.3) | |
Transverse | 2.2 (1.2) | 1.8 (1.9) | 2.9 (4.8) | |
Ankle right | Sagittal | 2.0 (1.3) | 1.6 (1.1) | 2.7 (5.4) |
Frontal | 2.4 (1.6) | 2.6 (2.7) | 3.5 (4.6) | |
Transverse | 2.2 (1.0) | 3.4 (2.9) | 4.9 (6.6) | |
Hip left | Sagittal | 2.5 (1.7) | 1.1 (0.7) | 0.8 (0.7) |
Frontal | 2.4 (1.9) | 1.8 (1.8) | 2.0 (1.7) | |
Transverse | 2.0 (1.5) | 1.5 (1.3) | 2.0 (1.8) | |
Knee left | Sagittal | 3.2 (2.6) | 1.0 (0.7) | 1.4 (1.1) |
Frontal | 3.2 (1.7) | 3.1 (3.0) | 4.0 (3.9) | |
Transverse | 2.3 (0.9) | 1.5 (1.1) | 2.5 (3.9) | |
Ankle left | Sagittal | 2.9 (1.4) | 0.9 (0.8) | 2.1 (4.1) |
Frontal | 2.3 (1.2) | 2.3 (1.9) | 3.1 (3.3) | |
Transverse | 1.9 (0.8) | 1.7 (1.7) | 3.1 (5.1) |
ROM (°) | Tilted (Movement 1) | Extension (Movement 2) | Squat (Movement 3) | Walking (Movement 4a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | ICC | SEM (°) | SEM% | ICC | SEM (°) | SEM% | ICC | SEM (°) | SEM% | ICC | SEM (°) | SEM% | ||
Pelvis | Sagittal | 12.8 (2.1) | 1.00 | 0.1 | 0.7% | 1.00 | 0.1 | 0.5% | 1.00 | 0.1 | 0.5% | 0.98 | 0.3 | 2.5% |
Frontal | 6.8 (0.8) | 0.98 | 0.1 | 1.7% | 0.98 | 0.1 | 1.6% | 1.00 | 0.1 | 0.8% | 0.76 | 0.4 | 6.1% | |
Transverse | 17.9 (4.1) | 1.00 | 0.0 | 0.0% | 1.00 | 0.0 | 0.0% | 1.00 | 0.0 | 0.0% | 1.00 | 0.0 | 0.0% | |
Hip right | Sagittal | 50.4 (2.4) | 0.98 | 0.3 | 0.7% | 1.00 | 0.2 | 0.4% | 1.00 | 0.3 | 0.6% | 0.90 | 0.9 | 1.8% |
Frontal | 14.0 (1.9) | 0.81 | 0.8 | 5.8% | 0.90 | 0.7 | 5.1% | 0.90 | 0.6 | 4.2% | 0.50 | 1.3 | 9.3% | |
Transverse | 18.4 (2.7) | 0.98 | 0.4 | 2.0% | 1.00 | 0.4 | 1.9% | 1.00 | 0.2 | 1.1% | 0.90 | 0.7 | 4.0% | |
Knee right | Sagittal | 73.3 (3.2) | 1.00 | 0.2 | 0.2% | 1.00 | 0.2 | 0.3% | 0.92 | 0.9 | 1.3% | 1.00 | 0.2 | 0.3% |
Frontal | 11.8 (1.9) | 0.68 | 1.1 | 9.4% | 0.72 | 1.0 | 8.7% | 0.83 | 0.8 | 6.8% | 0.15 | 1.8 | 15.3% | |
Transverse | 18.9 (2.8) | 0.93 | 0.7 | 4.0% | 0.91 | 0.8 | 4.4% | 0.77 | 1.4 | 7.2% | 0.78 | 1.3 | 6.9% | |
Ankle right | Sagittal | 46.3 (16.0) | 0.95 | 3.4 | 7.4% | 0.97 | 2.9 | 6.2% | 0.93 | 4.3 | 9.3% | 1.00 | 1.0 | 2.2% |
Frontal | 18.5 (3.2) | 0.69 | 1.8 | 9.8% | 0.56 | 2.1 | 11.5% | 0.80 | 1.4 | 7.7% | 0.83 | 1.3 | 7.2% | |
Transverse | 21.3 (4.8) | 0.83 | 2.0 | 9.4% | 0.81 | 2.1 | 9.7% | 0.63 | 2.9 | 13.6% | 0.81 | 2.1 | 9.9% | |
Hip left | Sagittal | 46.9(4.7) | 1.00 | 0.2 | 0.5% | 1.00 | 0.2 | 0.5% | 1.00 | 0.1 | 0.3% | 0.90 | 1.2 | 2.6% |
Frontal | 15.0 (1.6) | 0.91 | 0.5 | 3.3% | 0.90 | 0.5 | 3.2% | 0.90 | 0.5 | 3.3% | 0.40 | 1.3 | 8.5% | |
Transverse | 17.2 (3.5) | 0.98 | 0.5 | 2.8% | 1.00 | 0.8 | 4.5% | 1.00 | 0.3 | 1.6% | 0.90 | 0.9 | 5.2% | |
Knee left | Sagittal | 75.2 (9.3) | 1.00 | 0.5 | 0.7% | 1.00 | 0.6 | 0.8% | 0.98 | 1.2 | 1.6% | 0.99 | 0.9 | 1.2% |
Frontal | 10.4 (2.8) | 0.60 | 1.8 | 17.1% | 0.70 | 1.5 | 14.9% | 0.86 | 1.0 | 10.0% | 0.84 | 1.1 | 10.9% | |
Transverse | 19.7 (4.5) | 0.99 | 0.4 | 2.1% | 0.99 | 0.4 | 2.2% | 0.97 | 0.7 | 3.8% | 0.95 | 1.0 | 5.3% | |
Ankle left | Sagittal | 41.0 (3.7) | 0.92 | 1.0 | 2.5% | 0.98 | 0.6 | 1.4% | 0.96 | 0.7 | 1.8% | 0.98 | 0.5 | 1.2% |
Frontal | 17.4 (4.5) | 0.87 | 1.6 | 9.1% | 0.86 | 1.7 | 9.6% | 0.70 | 2.4 | 14.0% | 0.95 | 1.0 | 5.9% | |
Transverse | 19.8 (3.6) | 0.68 | 2.0 | 10.3% | 0.83 | 1.5 | 7.5% | 0.75 | 1.8 | 9.2% | 0.88 | 1.3 | 6.3% | |
Mean Sagittal | 49.4 (5.9) | 0.98 | 0.8 | 1.8% | 0.99 | 0.7 | 1.4% | 0.97 | 1.1 | 2.2% | 0.96 | 0.7 | 1.7% | |
Mean Frontal | 13.4 (2.4) | 0.79 | 1.1 | 8.0% | 0.80 | 1.1 | 7.8% | 0.86 | 1.0 | 6.7% | 0.63 | 1.2 | 9.0% | |
Mean Transverse | 19.0 (3.7) | 0.91 | 0.9 | 4.4% | 0.93 | 0.8 | 4.3% | 0.87 | 1.0 | 5.2% | 0.90 | 1.1 | 5.4% | |
Mean Pelvis | 12.5 (2.4) | 0.99 | 0.1 | 0.8% | 0.99 | 0.1 | 0.7% | 1.00 | 0.0 | 0.4% | 0.91 | 0.2 | 2.8% | |
Mean Hip | 26.9 (2.8) | 0.94 | 0.5 | 2.5% | 0.95 | 0.5 | 2.6% | 0.96 | 0.3 | 1.8% | 0.76 | 1.1 | 5.2% | |
Mean Knee | 34.8 (4.1) | 0.86 | 0.8 | 5.6% | 0.89 | 0.8 | 5.2% | 0.89 | 1.0 | 5.1% | 0.78 | 1.1 | 6.6% | |
Mean Ankle | 27.4 (5.9) | 0.82 | 2.0 | 8.1% | 0.84 | 1.8 | 7.7% | 0.80 | 2.3 | 9.3% | 0.91 | 1.2 | 5.5% |
Mean ROM (°) | Mean RMSE (°) | Mean ∆ROM (°) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Walking | Stair Ascent | Stair Descent | Obstacle Crossing | Walking | Stair Ascent | Stair Descent | Obstacle Crossing | Walking | Stair Ascent | Stair Descent | Obstacle Crossing | ||
Pelvis Sagittal | 12.8 | 18.4 | 24.4 | 18.9 | 0.9 | 1.2 | 1.7 * | 1.4 | 0.5 | 0.8 | 1.3 | 1.3 | |
Pelvis Frontal | 6.8 | 13.7 | 20.0 | 13.3 | 0.9 | 2.2* | 2.6 * | 1.3 | 0.5 | 0.7 | 1.9 * | 1.0 | |
Pelvis Transverse | 17.9 | 20.0 | 47.6 | 27.1 | 1.4 | 1.5 | 3.5 * | 2.0 | 0.2 | 0.6 | 0.8 * | 0.6 | |
Front | Hip Sagittal | 50.4 | 83.5 | 69.7 | 104.5 | 2.1 | 2.8 | 7.8 * | 7.3 * | 1.2 | 1.0 | 2.6 * | 1.5 |
Hip Frontal | 14.0 | 18.1 | 30.8 | 17.4 | 2.4 | 4.3 * | 4.9 * | 3.5 * | 2.1 | 3.8 | 3.1 | 2.9 | |
Hip Transverse | 18.4 | 20.6 | 30.0 | 21.4 | 2.2 | 3.1 | 4.2 * | 4.5 * | 2.0 | 2.2 | 3.0 | 2.8 | |
Knee Sagittal | 73.3 | 98.7 | 101.6 | 119.2 | 3.6 | 5.3 | 12.8 * | 10.2 * | 1.3 | 4.3 | 2.3 | 5.3 * | |
Knee Frontal | 11.8 | 13.6 | 15.3 | 14.4 | 2.7 | 4.2 | 4.2 | 4.4 | 2.5 | 4.7 | 3.0 | 6.5 * | |
Knee Transverse | 18.9 | 19.1 | 25.3 | 27.8 | 2.4 | 3.8 | 5.4 * | 5.1 * | 1.9 | 4.2 | 4.0 | 5.6 * | |
Ankle Sagittal | 46.3 | 45.4 | 76.5 | 48.4 | 2.1 | 5.7 * | 7.9 * | 4.3 * | 1.6 | 5.4 | 4.6 | 6.8 | |
Ankle Frontal | 18.5 | 21.6 | 25.1 | 21.9 | 2.5 | 2.4 | 4.0 * | 3.3 | 2.7 | 2.3 | 3.8 | 3.0 | |
Ankle Transverse | 21.3 | 18.4 | 24.5 | 21.2 | 2.4 | 2.3 | 3.1 | 3.6 * | 4.1 | 4.4 | 1.9 | 3.0 | |
Back | Hip Sagittal | 46.9 | 83.2 | 65.6 | 65.9 | 2.3 | 3.5 | 5.9 * | 5.1 * | 0.9 | 1.1 | 2.1 | 1.1 |
Hip Frontal | 15.0 | 20.2 | 29.9 | 19.6 | 1.8 | 5.2 * | 4.0 * | 3.3 * | 1.5 | 4.8 * | 1.9 | 3.6 | |
Hip Transverse | 17.2 | 23.7 | 29.8 | 22.0 | 2.0 | 3.2 * | 4.7 * | 3.1 * | 1.7 | 2.5 | 2.7 | 1.4 | |
Knee Sagittal | 75.2 | 94.1 | 103.5 | 129.6 | 3.2 | 5.3 | 11.3 * | 12.3 * | 1.0 | 3.6 | 2.6 | 5.1 * | |
Knee Frontal | 10.4 | 16.2 | 16.3 | 15.3 | 2.7 | 3.7 | 4.4 * | 4.0 | 2.7 | 2.8 | 4.0 | 4.9 | |
Knee Transverse | 19.7 | 19.8 | 24.0 | 27.5 | 2.3 | 4.1 * | 5.3 * | 4.9 * | 1.3 | 2.9 | 4.1 * | 3.3 | |
Ankle Sagittal | 41.0 | 50.8 | 70.8 | 43.9 | 2.9 | 4.5 | 9.0 * | 7.2 * | 1.0 | 6.4 * | 3.5 | 4.6 | |
Ankle Frontal | 17.4 | 18.4 | 22.1 | 22.7 | 2.2 | 2.3 | 3.5 * | 3.9 * | 2.4 | 2.2 | 3.2 | 2.8 | |
Ankle Transverse | 19.8 | 17.8 | 22.1 | 31.8 | 1.9 | 2.3 | 3.9 * | 5.0 * | 1.8 | 3.6 | 2.2 | 10.5 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebleu, J.; Gosseye, T.; Detrembleur, C.; Mahaudens, P.; Cartiaux, O.; Penta, M. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations. Sensors 2020, 20, 715. https://doi.org/10.3390/s20030715
Lebleu J, Gosseye T, Detrembleur C, Mahaudens P, Cartiaux O, Penta M. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations. Sensors. 2020; 20(3):715. https://doi.org/10.3390/s20030715
Chicago/Turabian StyleLebleu, Julien, Thierry Gosseye, Christine Detrembleur, Philippe Mahaudens, Olivier Cartiaux, and Massimo Penta. 2020. "Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations" Sensors 20, no. 3: 715. https://doi.org/10.3390/s20030715
APA StyleLebleu, J., Gosseye, T., Detrembleur, C., Mahaudens, P., Cartiaux, O., & Penta, M. (2020). Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations. Sensors, 20(3), 715. https://doi.org/10.3390/s20030715