Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies
Abstract
:1. Introduction
2. Background
Exposure to Air Pollution
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R.; M Garcia, N.; Pombo, N. Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: A review. Electronics 2019, 8, 1081. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Grenez, F.; Villarejo, M.; Zapirain, B.; Zorrilla, A. Wireless prototype based on pressure and bending sensors for measuring gate quality. Sensors 2013, 13, 9679–9703. [Google Scholar] [CrossRef]
- Rath, M.; Pattanayak, B. Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. Int. J. Hum. Rights Healthc. 2019, 12, 148–162. [Google Scholar] [CrossRef]
- Marques, G. Ambient Assisted Living and Internet of Things. In Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities; Cardoso, P.J.S., Monteiro, J., Semião, J., Rodrigues, J.M.F., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 100–115. ISBN 978-1-5225-7332-6. [Google Scholar]
- El Murabet, A.; Abtoy, A.; Touhafi, A.; Tahiri, A. Ambient Assisted living system’s models and architectures: A survey of the state of the art. J. King Saud Univ. Comput. Inf. Sci. 2018, 1, 1–10. [Google Scholar] [CrossRef]
- United Nations (UN). World Population Ageing: 1950–2050; UN: New York, NY, USA, 2001; pp. 11–13. [Google Scholar]
- Centers for Disease Control and Prevention. The State of Aging and Health in America 2007; N. A. on an Aging Society. 2007. Available online: https://www.cdc.gov/aging/pdf/saha_2007.pdf (accessed on 15 January 2020).
- De la Torre Díez, I.; Garcia-Zapirain, B.; López-Coronado, M.; Rodrigues, J.J.P.C.; del Pozo Vegas, C. A New mHealth app for monitoring and awareness of healthy eating: Development and user evaluation by spanish users. J. Med. Syst. 2017, 41, 109. [Google Scholar] [CrossRef]
- Silva, B.M.C.; Rodrigues, J.J.P.C.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015, 56, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Zelenko, O.; Tjondronegoro, D.; Mani, M. Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR mHealth uHealth 2015, 3, e27. [Google Scholar] [CrossRef] [Green Version]
- Krebs, P.; Duncan, D.T. Health app use among us mobile phone owners: A national survey. JMIR mHealth uHealth 2015, 3, e101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manogaran, G.; Chilamkurti, N.; Hsu, C.-H. Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks. Pers. Ubiquitous Comput. 2018, 22, 879–882. [Google Scholar] [CrossRef] [Green Version]
- Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 2018, 82, 375–387. [Google Scholar] [CrossRef]
- Rathore, M.M.; Paul, A.; Ahmad, A.; Chilamkurti, N.; Hong, W.-H.; Seo, H. Real-time secure communication for Smart City in high-speed Big Data environment. Future Gener. Comput. Syst. 2018, 83, 638–652. [Google Scholar] [CrossRef]
- Jo, D.; Kim, G.J. ARIoT: Scalable augmented reality framework for interacting with Internet of Things appliances everywhere. IEEE Trans. Consum. Electron. 2016, 62, 334–340. [Google Scholar] [CrossRef]
- Dey, N.; Ashour, A.S.; Shi, F.; Fong, S.J.; Tavares, J.M.R.S. Medical cyber-physical systems: A survey. J. Med. Syst. 2018, 42, 74. [Google Scholar] [CrossRef] [Green Version]
- Koleva, P.; Tonchev, K.; Balabanov, G.; Manolova, A.; Poulkov, V. Challenges in designing and implementation of an effective Ambient Assisted Living system. In Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, Serbia, 14–17 October 2015; pp. 305–308. [Google Scholar]
- Anjum, A.; Ilyas, M.U. Activity recognition using smartphone sensors. In Proceedings of the 2013 IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013; pp. 914–919. [Google Scholar]
- Shoaib, M.; Scholten, H.; Havinga, P.J.M. Towards physical activity recognition using smartphone sensors. In Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), Vietri sul Mere, Italy, 18–21 December 2013; pp. 80–87. [Google Scholar]
- Bisio, I.; Lavagetto, F.; Marchese, M.; Sciarrone, A. Smartphone-centric ambient assisted living platform for patients suffering from co-morbidities monitoring. Commun. Mag. IEEE 2015, 53, 34–41. [Google Scholar] [CrossRef]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.; Harkin, L.; Kanjo, E.; Billieux, J. Problematic smartphone use: Investigating contemporary experiences using a convergent design. Int. J. Environ. Res. Public. Health 2018, 15, 142. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xiang, Z.; Fesenmaier, D.R. Smartphone use in everyday life and travel. J. Travel Res. 2016, 55, 52–63. [Google Scholar] [CrossRef]
- Gorai, A.K.; Tchounwou, P.B.; Biswal, S.; Tuluri, F. Spatio-temporal variation of particulate matter (PM2.5) concentrations and its health impacts in a Mega City, Delhi in India. Environ. Health Insights 2018, 12, 117863021879286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
- Mannucci, P.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public. Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Pollution. Available online: https://www.eea.europa.eu/soer-2015/europe/air#tab-based-on-data (accessed on 15 January 2020).
- Environmental Protection Agency. Air Quality—National Summary. Available online: https://www.epa.gov/air-trends/air-quality-national-summary (accessed on 15 January 2020).
- European Environment Agency. Trends in Atmospheric Concentrations of CO2 (ppm), CH4 (ppb) and N2O (ppb), between 1800 and 2017. Available online: https://www.eea.europa.eu/data-and-maps/daviz/atmospheric-concentration-of-carbon-dioxide-5 (accessed on 15 January 2020).
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.R.; Saunders, E.; Perea, R.A.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Linking air quality and human health effects models: An application to the Los Angeles air basin. Environ. Health Insights 2017, 11, 117863021773755. [Google Scholar] [CrossRef] [Green Version]
- Walsh, P.J.; Dudney, C.S.; Copenhaver, E.D. Indoor Air Quality; CRC Press: Boca Raton, FL, USA, 1983; ISBN 0-8493-5015-8. [Google Scholar]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2017, 4, 284–295. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (Outdoor) Air Quality and Health; World Health Organization: Geneva, Switzerland, 2014.
- Wild, C.P. Complementing the genome with an “Exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- National Weather Service Why Air Quality Is Important. Available online: https://www.weather.gov/safety/airquality (accessed on 21 July 2019).
- European Environment Agency. Air Quality in Europe: 2019 Report; European Environment Agency: Copenhagen, Denmark, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- Holland, M.; Spadaro, J.; Misra, A.; Pearson, B. Costs of Air Pollution from European Industrial Facilities 2008–2012—An Updated Assessment; EEA Technical Report; European Environment Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- Kaiser, J. Epidemiology: How dirty air hurts the heart. Science 2005, 307, 1858b–1859b. [Google Scholar] [CrossRef]
- Weuve, J. Exposure to particulate air pollution and cognitive decline in older women. Arch. Intern. Med. 2012, 172, 219. [Google Scholar] [CrossRef] [Green Version]
- De Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Aye, G.C.; Edoja, P.E. Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model. Cogent Econ. Finance 2017, 5. [Google Scholar] [CrossRef]
- Bonino, S. Carbon dioxide detection and indoor air quality control. Occup. Health Saf. (Waco, Tex.) 2016, 85, 46–48. [Google Scholar]
- Salvatori, E.; Gentile, C.; Altieri, A.; Aramini, F.; Manes, F. Nature-based solution for reducing CO2 levels in museum environments: A phytoremediation study for the Leonardo da Vinci’s “Last Supper”. Sustainability 2020, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO 2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Myers, S.S. Measuring the effects of anthropogenic CO2 emissions on global nutrient intakes: A modelling analysis. Lancet 2017, 389, S19. [Google Scholar] [CrossRef]
- Chirico, F.; Rulli, G. Thermal comfort and indoor air quality in some of the italian state police workplaces. G. Ital. Med. Lav. Ergon. 2017, 39, 230–239. [Google Scholar]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [Green Version]
- Zi, C.; Jie, W.; Hong-Bo, C. CO2 emissions and urbanization correlation in China based on threshold analysis. Ecol. Indic. 2016, 61, 193–201. [Google Scholar] [CrossRef]
- Lin, J.C.; Mitchell, L.; Crosman, E.; Mendoza, D.L.; Buchert, M.; Bares, R.; Fasoli, B.; Bowling, D.R.; Pataki, D.; Catharine, D.; et al. CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake City urban area. Bull. Am. Meteorol. Soc. 2018, 99, 2325–2339. [Google Scholar] [CrossRef]
- Coutts, A.; Beringer, J.; Tapper, N. Changing urban climate and CO2 emissions: Implications for the development of policies for sustainable cities. Urban Policy Res. 2010, 28, 27–47. [Google Scholar] [CrossRef]
- Satterthwaite, D. Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008, 20, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Lin, J.C.; Oda, T.; Kort, E. Space-based quantification of per capita CO2 emissions from cities. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Chu, C.-H.; Shin, S.-M. ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 2014, 14, 4230–4244. [Google Scholar] [CrossRef]
- Abraham, S.; Li, X. A Cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput. Sci. 2014, 34, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.M.S.; Pitarma, R. Smartphone application for enhanced indoor health environments. J. Inf. Syst. Eng. Manag. 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Pitarma, R. A Cost-effective air quality supervision solution for enhanced living environments through the internet of things. Electronics 2019, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Ferreira, C.R.; Pitarma, R. Indoor air quality assessment using a CO2 monitoring system based on internet of things. J. Med. Syst. 2019, 43. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. An Internet of things-based environmental quality management system to supervise the indoor laboratory conditions. Appl. Sci. 2019, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Pitarma, R. IAQ Evaluation Using an IoT CO2 Monitoring System for Enhanced Living Environments. In Trends and Advances in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 746, pp. 1169–1177. ISBN 978-3-319-77711-5. [Google Scholar]
- Marques, G.; Pires, I.; Miranda, N.; Pitarma, R. Air quality monitoring using assistive robots for ambient assisted living and enhanced living environments through internet of things. Electronics 2019, 8, 1375. [Google Scholar] [CrossRef] [Green Version]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation. In The Future Internet; Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., et al., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 431–446. ISBN 978-3-642-20897-3. [Google Scholar]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding smart cities: An integrative framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar]
- Hernández-Muñoz, J.M.; Vercher, J.B.; Muñoz, L.; Galache, J.A.; Presser, M.; Hernández Gómez, L.A.; Pettersson, J. Smart Cities at the Forefront of the Future Internet. In The Future Internet; Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 447–462. ISBN 978-3-642-20897-3. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Tao, M.; Zuo, J.; Liu, Z.; Castiglione, A.; Palmieri, F. Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes. Future Gener. Comput. Syst. 2018, 78, 1040–1051. [Google Scholar] [CrossRef]
- Mshali, H.; Lemlouma, T.; Moloney, M.; Magoni, D. A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 2018, 66, 26–56. [Google Scholar] [CrossRef] [Green Version]
- Decuir, J. The Story of the Internet of Things: Issues in utility, connectivity, and security. IEEE Consum. Electron. Mag. 2015, 4, 54–61. [Google Scholar] [CrossRef]
- Verma, P.; Sood, S.K. Fog Assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet Things J. 2018, 5, 1789–1796. [Google Scholar] [CrossRef]
- Dutta, J.; Roy, S. IoT-fog-cloud based architecture for smart city: Prototype of a smart building. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering—Confluence, Noida, India, 12–13 January 2017; pp. 237–242. [Google Scholar]
- Darby, S.J. Smart technology in the home: Time for more clarity. Build. Res. Inf. 2018, 46, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Pitarma, R. Smartwatch-Based Application for Enhanced Healthy Lifestyle in Indoor Environments. In Computational Intelligence in Information Systems; Omar, S., Haji Suhaili, W.S., Phon-Amnuaisuk, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 888, pp. 168–177. ISBN 978-3-030-03301-9. [Google Scholar]
- Marques, G.; Pitarma, R. mHealth: Indoor environmental quality measuring system for enhanced health and well-being based on internet of things. J. Sens. Actuator Netw. 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, N.A.; Zainal, Z.; Harum, N.; Chen, L.; Saleh, N.; Azni, F. Wireless internet of things-based air quality device for smart pollution monitoring. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Benammar, M.; Abdaoui, A.; Ahmad, S.; Touati, F.; Kadri, A. A modular IoT platform for real-time indoor air quality monitoring. Sensors 2018, 18, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wargocki, P.; Wyon, D.P.; Sundell, J.; Clausen, G.; Fanger, P.O. The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 2000, 10, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.Y.; Bates, R.R.; Kennedy, D. Assessment of human exposure to air pollution: Methods, measurements, and models. In Air Pollution, the Automobile, and Public Health; National Academies Press (US): Washington, DC, USA, 1988. [Google Scholar]
- Rojas-Rueda, D.; de Nazelle, A.; Tainio, M.; Nieuwenhuijsen, M.J. The health risks and benefits of cycling in urban environments compared with car use: Health impact assessment study. BMJ 2011, 343, d4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apparicio, P.; Carrier, M.; Gelb, J.; Séguin, A.-M.; Kingham, S. Cyclists’ exposure to air pollution and road traffic noise in central city neighbourhoods of Montreal. J. Transp. Geogr. 2016, 57, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Slezakova, K.; Pereira, M.C.; Morais, S. Ultrafine particles: Levels in ambient air during outdoor sport activities. Environ. Pollut. 2019, 113648. [Google Scholar] [CrossRef]
- Adams, M.D.; Kanaroglou, P.S. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J. Environ. Manag. 2016, 168, 133–141. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef]
- de Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Tiwary, A.; Williams, I. Air Pollution: Measurement, Modelling and Mitigation, 4th ed.; Colls, J., Ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-429-46998-5. [Google Scholar]
- Spengler, J.; Sexton, K. Indoor air pollution: a public health perspective. Science 1983, 221, 9–17. [Google Scholar] [CrossRef]
- Giamalaki, M.; Kolokotsa, D. Understanding the thermal experience of elderly people in their residences: Study on thermal comfort and adaptive behaviors of senior citizens in Crete, Greece. Energy Build. 2019, 185, 76–87. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D.; Shellington, E.M.; Cole, C.; de Faye, A.; Harris, J.; Kim, D.D.; Abelsohn, A. A systematic review of the short-term health effects of air pollution in persons living with coronary heart disease. J. Clin. Med. 2019, 8, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Song, Y.; Kwan, M.-P.; Huang, B.; Xu, B. How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environ. Pollut. 2018, 238, 874–883. [Google Scholar] [CrossRef] [PubMed]
- de Geus-Neelen, K.C.J.M.; van Oorsouw, W.M.W.J.; Hendriks, L.A.H.C.; Embregts, P.J.C.M. Perceptions of staff and family of the quality of life of people with severe to profound intellectual disability. J. Intellect. Dev. Disabil. 2019, 44, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Borbet, T.C.; Gladson, L.A.; Cromar, K.R. Assessing air quality index awareness and use in Mexico City. BMC Public Health 2018, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Ashtari, F.; Esmaeil, N.; Mansourian, M.; Poursafa, P.; Mirmosayyeb, O.; Barzegar, M.; Pourgheisari, H. An 8-year study of people with multiple sclerosis in Isfahan, Iran: Association between environmental air pollutants and severity of disease. J. Neuroimmunol. 2018, 319, 106–111. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sridevi, S.; Pitchiah, R. Indoor air quality monitoring using wireless sensor network. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 422–427. [Google Scholar]
- Lee, S.C.; Chang, M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 2000, 41, 109–113. [Google Scholar] [CrossRef]
- Seppanen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Ramachandran, G.; Adgate, J.L.; Banerjee, S.; Church, T.R.; Jones, D.; Fredrickson, A.; Sexton, K. Indoor air quality in two urban elementary schools—Measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. J. Occup. Environ. Hyg. 2005, 2, 553–566. [Google Scholar] [CrossRef]
- Scheff, P.A.; Paulius, V.K.; Huang, S.W.; Conroy, L.M. Indoor air quality in a middle school, Part I: Use of CO2 as a tracer for effective ventilation. Appl. Occup. Environ. Hyg. 2000, 15, 824–834. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; de la Rue du Can, S. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuebbles, D.J.; Jain, A.K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71, 99–119. [Google Scholar] [CrossRef]
- Abas, N.; Khan, N. Carbon conundrum, climate change, CO2 capture and consumptions. J. CO2 Util. 2014, 8, 39–48. [Google Scholar] [CrossRef]
- Linden, B. Air pollution: Outdoor air quality and health. Br. J. Card. Nurs. 2019, 14, 1–4. [Google Scholar] [CrossRef]
- Clements, A.L.; Griswold, W.G.; Rs, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-cost air quality monitoring tools: From research to practice (A workshop summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.-M.; Jeon, H.J.; Yoon, D.K.; Park, S.H.; Hong, H.J.; Choi, K.Y.; Cho, H.W.; Cheon, H.C.; Lee, C.M. Reliability of low-cost, sensor-based fine dust measurement devices for monitoring atmospheric Particulate matter concentrations. Int. J. Environ. Res. Public. Health 2019, 16, 1430. [Google Scholar] [CrossRef] [Green Version]
- Afshar-Mohajer, N.; Zuidema, C.; Sousan, S.; Hallett, L.; Tatum, M.; Rule, A.M.; Thomas, G.; Peters, T.M.; Koehler, K. Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J. Occup. Environ. Hyg. 2018, 15, 87–98. [Google Scholar] [CrossRef]
- Honeycutt, W.T.; Ley, M.T.; Materer, N.F. Precision and limits of detection for selected commercially available, low-cost carbon dioxide and methane gas sensors. Sensors 2019, 19, 3157. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Shi, L. The aggregate effect of air pollution regulation on CO2 mitigation in China’s manufacturing industry: An econometric analysis. J. Clean. Prod. 2017, 142, 976–984. [Google Scholar] [CrossRef]
- Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Jawad, H.; Nordin, R.; Gharghan, S.; Jawad, A.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [Green Version]
- Bakir, A.; Chesler, G.; de la Torriente, M. Connecting to a bluetooth LE device. In Program the Internet of Things with Swift for iOS; Apress: Berkeley, CA, USA, 2016; pp. 247–294. ISBN 978-1-4842-1195-3. [Google Scholar]
- Müller, H.; Gove, J.L.; Webb, J.S.; Cheang, A. Understanding and comparing smartphone and tablet use: Insights from a large-scale diary study. In Proceedings of the Proceedings of the Annual Meeting of the Australian Special Interest Group for Computer Human Interaction, Parkville, Australia, 7–10 December 2015; pp. 427–436. [Google Scholar]
- van Deursen, A.J.A.M.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A.M. Modeling habitual and addictive smartphone behavior. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Błaszkiewicz, K.; Sariyska, R.; Lachmann, B.; Andone, I.; Trendafilov, B.; Eibes, M.; Markowetz, A. Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Res. Notes 2015, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.; Hussain, Z. Smartphone use, addiction, narcissism, and personality: A mixed methods investigation. Int. J. Cyber Behav. Psychol. Learn. 2015, 5, 17–32. [Google Scholar] [CrossRef] [Green Version]
- DZSF AR8200 Air Quality Meter, Sensor, Gas Analyzer, CO2 Meter, Gas Carbon Meter, Air Quality Monitor. Available online: https://www.amazon.de/dp/B07TXBSSTP/ref=sr_1_5?dchild=1&keywords=CO2+portable+sensor&qid=1575737813&sr=8-5 (accessed on 12 July 2019).
- Reeseiy Portable Digital Air Quality System. Available online: https://www.amazon.de/dp/B07Y36P1CF/ref=sr_1_9?keywords=CO2%2Bportable%2Bsensor&qid=1575737813&sr=8-9&th=1 (accessed on 12 July 2019).
- VOLTCRAFT CM 100 Carbon Dioxide Gas Monitor. Available online: https://www.amazon.de/dp/B003A669VA/ref=sr_1_17?keywords=CO2+portable+sensor&qid=1575737813&sr=8-17 (accessed on 12 July 2019).
- ROTRONIC CP11 CO2. Available online: https://www.amazon.de/dp/B00KILTWMI/ref=pd_sbs_60_7?_ encoding=UTF8&pd_rd_i=B00KILTWMI&pd_rd_r=152c769d-e15d-42c0-9e13-3be1ea88dc9b&pd_rd_w=3viId&pd_rd_wg=lIsmY&pf_rd_p=184816e4-edb5-4587-8faf-776e0027d8d1&pf_rd_r=FV8ZRD4VRK5KRQXCN0TC&psc=1&refRID=FV8ZRD4VRK5KRQXCN0TC (accessed on 12 July 2019).
- Extech CO2 30 Air Quality CO2 Monitor for Measurement of Room. Available online: https://www.amazon.de/dp/B01D30Z5C6/ref=sr_1_26?keywords=co2-monitor&qid=1575738992&s=industrial&sr=1-26 (accessed on 12 July 2019).
Specification | Value |
---|---|
Operating Voltage | 4.5 ~ 5.5V DC |
Average Current | <60mA at 5V |
Peak Current | 150mA at 5V |
Output Signal | 0.4–2 V |
Measuring Range | 0~5000 ppm |
Accuracy | ± (50ppm 3% reading) |
Preheating Time | 3 min |
Response Time | 120s |
Working Temperature | 0 ~ 50 ℃ |
Working Humidity | 0 ~ 95% |
Sensor lifespan | >5 years |
Size | 37 mm × 69 mm |
Component | Cost |
---|---|
ESP32 | 24.15 € |
MH-Z14 | 52.11 € |
Cables and box | 9.50 € |
Total | 85.76 € |
Marker | Latitude | Longitude | CO2 (ppm) | Date and Time |
---|---|---|---|---|
1 | 40.41641 | −7.70737 | 511 | 14 December 2019 17:02 |
2 | 40.41651 | −7.70725 | 481 | 14 December 2019 17:04 |
3 | 40.41663 | −7.70712 | 484 | 14 December 2019 17:06 |
4 | 40.41663 | −7.70712 | 439 | 14 December 2019 17:08 |
5 | 40.41684 | −7.70684 | 460 | 14 December 2019 17:10 |
6 | 40.41692 | −7.7067 | 424 | 14 December 2019 17:12 |
7 | 40.41701 | −7.70654 | 510 | 14 December 2019 17:14 |
8 | 40.41707 | −7.7064 | 501 | 14 December 2019 17:16 |
9 | 40.41715 | −7.70627 | 511 | 14 December 2019 17:18 |
10 | 40.4172 | −7.70617 | 670 | 14 December 2019 17:20 |
11 | 40.41725 | −7.70605 | 716 | 14 December 2019 17:22 |
12 | 40.4173 | −7.70594 | 531 | 14 December 2019 17:24 |
13 | 40.41736 | −7.70586 | 453 | 14 December 2019 17:26 |
MCU | Sensors Unit | Architecture | Low Cost | Open-Source | Connectivity | Data Consulting | GPS | Portability |
---|---|---|---|---|---|---|---|---|
ESP8266 [64] | CO2 | IoT | √ | √ | Wi-Fi | Web/Mobile | × | × |
ESP8266 [63] | NH3, CO, NO2 C3H8, C4H10, CH4, H2 and C2H5OH | IoT | √ | √ | Wi-Fi | Mobile | × | × |
Arduino UNO [79] | CO2, PM, light, temperature and relative humidity | IoT | √ | √ | Wi-Fi/BLE | Smartwatch | × | × |
ESP8266 [80] | PM, CH2O, temperature and relative humidity | IoT | √ | √ | Wi-Fi | Web/Mobile | × | × |
Raspberry Pi 2 [81] | air quality index, temperature, relative humidity | IoT | √ | √ | Wi-Fi | Web | × | × |
Waspmote (sensor node) Raspberry Pi 2 (coordinator) [82] | CO2, CO, SO2, NO2, O3, Cl2, temperature, and relative humidity | WSN/IoT | √ | √ | Wi-Fi | Web | × | × |
Proposed method | CO2 | IoT | √ | √ | BLE | Mobile | √ | √ |
Solution name | Range (ppm) | Resolution (ppm) | Error (ppm) | Price (EUR) |
---|---|---|---|---|
DZSF AR8200 [124] | 350–9999 | 5 | ± (30 + 5% reading) | 377.38 |
Reeseiy CO2 [125] | 0–9999 | 1 | ± (30 + 5% reading) | 111.42 |
VOLTCRAFT CM 100 [126] | 0–4000 | 1 | ±5% of reading | 302.78 |
ROTRONIC CP11 [127] | 0–5000 | 1 | ± (30 + 5% reading) | 373.39 |
Extech CO230 [128] | 0–9999 | 1 | ± (50 + 5% reading) | 239.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, G.; Miranda, N.; Kumar Bhoi, A.; Garcia-Zapirain, B.; Hamrioui, S.; de la Torre Díez, I. Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies. Sensors 2020, 20, 720. https://doi.org/10.3390/s20030720
Marques G, Miranda N, Kumar Bhoi A, Garcia-Zapirain B, Hamrioui S, de la Torre Díez I. Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies. Sensors. 2020; 20(3):720. https://doi.org/10.3390/s20030720
Chicago/Turabian StyleMarques, Gonçalo, Nuno Miranda, Akash Kumar Bhoi, Begonya Garcia-Zapirain, Sofiane Hamrioui, and Isabel de la Torre Díez. 2020. "Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies" Sensors 20, no. 3: 720. https://doi.org/10.3390/s20030720
APA StyleMarques, G., Miranda, N., Kumar Bhoi, A., Garcia-Zapirain, B., Hamrioui, S., & de la Torre Díez, I. (2020). Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies. Sensors, 20(3), 720. https://doi.org/10.3390/s20030720