Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor
Abstract
:1. Introduction
2. Theoretical Model and Method
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roether, J.; Chu, K.Y.; Willenbacher, N.; Shen, A.Q.; Bhalla, N. Real-time monitoring of DNA immobilization and detection of DNA polymerase activity by a microfluidic nanoplasmonic platform. Biosens. Bioelectron. 2019, 142, 111528. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.Q.; Yuan, N.; Gong, D.J.; Yang, M.H. A high-sensitivity and broad-range SPR glucose sensor based on improved glucose sensitive membranes. Photonic Sens. 2019, 9, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhao, X.; Huang, T.Y.; Ding, H.F.; Wu, C. Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal–ITO Hybrid Multilayer. Plasmonics 2019, 14, 1743–1750. [Google Scholar] [CrossRef]
- Jena, S.C.; Shrivastava, S.; Saxena, S.; Kumar, N.; Maiti, S.K.; Mishra, B.P.; Singh, R.K. Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci. Rep. UK 2019, 9, 13485. [Google Scholar] [CrossRef] [Green Version]
- Ermini, M.L.; Mariani, S.; Scarano, S.; Minunni, M. Direct detection of genomic DNA by surface plasmon resonance imaging: An optimized approach. Biosens. Bioelectron. 2013, 40, 193–199. [Google Scholar] [CrossRef]
- Tsargorodska, A. Research and development in optical biosensors for determination of toxic environmental pollutants. J. Gerontol. Soc. Work 2007, 58, 613. [Google Scholar]
- Tang, L.; Casas, J.; Venkataramasubramani, M. Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal. Chem. 2013, 85, 1431–1439. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.; Paul, A.; Kumar, A.; Boykin, D.W.; Wilson, W.D. Biosensor-surface plasmon resonance: A strategy to help establish a new generation RNA-specific small molecules. Methods 2019, 167, 15–27. [Google Scholar] [CrossRef]
- Giannuzzi, R.; Donato, F.; Trizio, L.; Monteduro, A.G.; Maruccio, G.; Scarfiello, R.; Qualtieri, A.; Manna, L. Tunable near-infrared localized surface plasmon resonance of F, In-Codoped CdO nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 39921–39929. [Google Scholar] [CrossRef]
- Han, L.; Ding, H.F.; Huang, T.Y.; Wu, X.; Chen, B.; Ren, K.; Fu, S. Broadband optical reflection modulator in indium-tin-oxide-filled hybrid plasmonic waveguide with High modulation depth. Plasmonics 2018, 13, 1309–1314. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics 2017, 13, 281–285. [Google Scholar] [CrossRef]
- Qiu, X.J.; Lv, Q.; Cao, Z.Z. A high-quality spin and valley beam splitter in WSe2 tunnelling junction through the Goos-Hänchen shift. J. Phys. Condens. Matter 2019, 31, 225303. [Google Scholar] [CrossRef] [PubMed]
- Li, S.N.; Wan, Y.H.; Liu, J.S.; Kong, W.J.; Zheng, Z. Effect of excitation beam divergence on the Goos–Hänchen shift enhanced by bloch surface waves. Appl. Sci. 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Artmann, K. Berechnung der seitenversetzung des totalreflektierten strahles. Ann. Der Phys. 1948, 437, 87–102. [Google Scholar] [CrossRef]
- Solookinejad, G.; Panahi, M.; Sangachin, E.A.; Asadpour, S.H. Giant Goos-Hänchen shifts in polaritonic materials doped with nanoparticles. Plasmonics 2017, 12, 849–854. [Google Scholar] [CrossRef]
- Dadoenkova, Y.S.; Bentivegna, F.; Petrov, R.V.; Bichurin, M. Principle of tunable chemical vapor detection exploiting the angular Goos-Hänchen shift in a magneto-electric liquid-crystal-based system. J. Opt. UK 2017, 19, 095802. [Google Scholar] [CrossRef]
- Merano, M.; Aiello, A.; Hooft, G.W.; Exter, M.P.; Eliel, E.R.; Woerdman, J.P. Observation of Goos-Hänchen shifts in metallic reflection. Opt. Express 2007, 15, 15928–15934. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Shan, Y.X.; Gan, S.W.; Zhao, Y.T.; Dai, X.Y.; Xiang, Y.J. Giant and controllable Goos-Hanchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express 2018, 8, 3036–3048. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Gao, P.; Liu, H.M.; Zhang, J. Large tunable lateral shift from guided wave surface plasmon resonance. Plasmonics 2019, 14, 1289–1293. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, B.D. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 2013, 138, 2640–2646. [Google Scholar] [CrossRef]
- Lian, J.Q.; Zhang, D.W.; Hong, R.J.; Yan, T.Z.; Lv, T.G.; Zhang, D.H. Broadband absorption tailoring of SiO2/Cu/ITO arrays based on hybrid coupled resonance mode. Nanomaterials (Basel) 2019, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szunerits, S.; Castel, X.; Boukherroub, R. Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: Influence on stability and sensitivity. J. Phys. Chem. C 2008, 112, 15813–15817. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mishra, S.K. Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. EPL Europhys. Lett. 2015, 112, 10001. [Google Scholar] [CrossRef]
- Byun, K.M.; Kim, N.H.; Leem, J.W.; Yu, J.S. Enhanced surface plasmon resonance detection using porous ITO–gold hybrid substrates. Appl. Phys. B 2012, 107, 803–808. [Google Scholar] [CrossRef]
- Gan, S.M.; Menon, P.S.; Mohamad, N.R.; Jamil, N.A.; Majlis, B.Y. FDTD simulation of Kretschmann based Cr-Ag-ITO SPR for refractive index sensor. Mater. Today Proc. 2019, 7, 668–674. [Google Scholar] [CrossRef]
- Han, L.; Wu, C. A phase-sensitivity-enhanced surface plasmon resonance biosensor based on ITO-graphene hybrid structure. Plasmonics 2019, 14, 901–906. [Google Scholar] [CrossRef]
- Maharana, P.K.; Srivastava, T.; Jha, R. On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 2014, 9, 1113–1120. [Google Scholar] [CrossRef]
- Ouyang, Q.L.; Zeng, S.W.; Li, J.; Hong, L.Y.; Xu, G.X.; Dinh, X.Q.; Qian, J.; He, S.L.; Qu, J.L.; Coquet, P.; et al. Sensitivity enhancement of transition metaldichalcogenides/silicon nanostructure-based surface plasmon resonancebiosensor. Sci. Rep. UK 2016, 6, 1–13. [Google Scholar]
- Han, L.; He, X.J.; Ge, L.C.; Huang, T.Y.; Ding, H.F.; Wu, C. Comprehensive study of performance SPR biosensor based on metal-ITO-graphene/TMDCs hybrid multilayer. Plasmonics 2019, 14, 2021–2030. [Google Scholar] [CrossRef]
- Wu, L.M.; Guo, J.; Wang, Q.K.; Lu, S.B.; Dai, X.Y.; Xiang, Y.J.; Fan, D.Y. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuat. B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Srivastava, T.; Jha, R. Black phosphorus: A new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol. Lett. 2018, 30, 319–322. [Google Scholar] [CrossRef]
- Kateryna, S.; Yulia, B.; Inna, B.; Shtepliuk, I.; Viter, R.; Ubelis, A.; Beni, V.; Starodub, N.; Yakimova, R.; Khranovskyy, V. Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 2016, 16, 223. [Google Scholar]
- Meshginqalam, B.; Barvestani, J. Performance Enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 2018, 18, 7537–7543. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Zhang, N.; Humbert, G.; Gong, T.X.; Shum, P.P.; Li, K.W.; August, J.L.; Wu, Z.F.; Hu, J.J.; Feng, L.; Dinh, Q.X.; et al. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 2016, 233, 195–201. [Google Scholar] [CrossRef]
- Fan, Y.C.; Tu, L.Q.; Zhang, F.L.; Fu, Q.H.; Zhang, Z.R.; Wei, Z.Y.; Li, H.Q. Broadband terahertz absorption in graphene-embedded photonic crystals. Plasmonics 2018, 13, 1153–1158. [Google Scholar] [CrossRef]
- Mekkaoui, M.; Jellal, A.; Bahlouli, H. Effect of magnetic field on Goos-Hanchen shifts in gaped graphene triangular barrier. Physica E 2019, 111, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Mekkaoui, M.; Kinani, R.E.; Jellal, A. Goos-Hanchen shifts in graphene-based linear barrier. Mater. Res. Express 2019, 6, 085013. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.Q.; Xiang, Y.J.; Luo, C.Y. Tunable enhanced Goos-Hanchen shift of light beam reflected from graphene-based hyperbolic metamaterials. Appl. Phys. B Lasers Opt. 2018, 124, 115. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Ren, W.Y.; Cao, Q.Z. Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric. Superlattices Microstruct. 2018, 120, 1–6. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhai, F.; Peeters, F.M.; Xu, H.Q.; Chang, K. Valley-dependent Brewster Angles and Goos-Hanchen effect in strained graphene. Phys. Rev. Lett. 2011, 106, 176802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Pradhan, M. Goos-Hanchen shift for Gaussian beams impinging on monolayer-MoS2-coated surfaces. J. Opt. Soc. AMB 2018, 35, 1956–1962. [Google Scholar] [CrossRef]
- Ghadiri, H.; Saffarzadeh, A. Band-offset-induced lateral shift of valley electrons in ferromagnetic MoS2/WS2 planar heterojunctions. J. Appl. Phys. 2018, 123, 104301. [Google Scholar] [CrossRef] [Green Version]
- Ghadiri, H.; Saffarzadeh, A. Gate-controlled valley transport and Goos-Hanchen effect in monolayer WS2. J. Phsy. Condens. Mat. 2017, 29, 115303. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.W.; Hu, S.Y.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M.; Coqueta, P.; Yong, K.T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuat. B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Singhal, R.; Kabiraj, D.; Kulriya, P.K.; PivinR, J.C.; Chandra, R.; Avasthi, D.K. Blue-shifted SPR of Au nanoparticles with ordering of carbon by dense ionization and thermal treatment. Plasmonics 2013, 8, 295–305. [Google Scholar] [CrossRef]
- Zakaria, R.; Zainuddin, N.A.M.; Leong, T.C.; Rosli, R.; Rusdi, M.F.; Harun, S.W.; Amiri, I.S. Investigation of surface pasmon resonance (SPR) in MoS2- and WS2-protected titanium side-polished optical fiber as a humidity sensor. Micromachines 2019, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, T.Y.; Perry, S.P.; Wu, X.; Huang, P.; Pan, J.X.; Wu, Y.H.; Cheng, Z. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 2018, 18, 2056. [Google Scholar] [CrossRef] [Green Version]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2019, 94, 031901. [Google Scholar] [CrossRef]
- Daimon, M.; Masumura, A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Optics. 2007, 46, 3811–3820. [Google Scholar] [CrossRef]
- Gan, C.H. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 2012, 101, 111609. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.T.; Li, J.; Luo, L.; Shen, J.; Li, C.Y.; Qin, J.; Bi, L.; Hou, J.Y. Weak measurement of magneto-optical Goos-Hanchen effect. Opt. Express 2019, 27, 17638–17647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.W.; Lu, F.Y.; Jiang, L.Y.; Jin, X.L.; Dai, X.Y.; Xiang, Y.J. Enhanced and controllable Goos–Hänchen shift with graphene surface plasmon in the terahertz regime. Opt. Commun. 2019, 452, 227–232. [Google Scholar] [CrossRef]
Type of TMDCs | Monolayer (nm) | Refractive Index |
---|---|---|
MoSe2 | 0.70 | 4.6226 + 1.0063i |
MoS2 | 0.65 | 5.0805 + 1.1723i |
WS2 | 0.80 | 4.8937 + 0.3124i |
WSe2 | 0.70 | 4.5501 + 0.4332i |
Type of TMDCs and Graphene | Graphene | ||||||
---|---|---|---|---|---|---|---|
0 Layer | Monolayer | Bilayer | 3 Layers | 4 Layers | 5 Layers | ||
MoSe2 | monolayer | 90.19 | 186.4 | −801.7 | −114.1 | −58.14 | −37.68 |
MoS2 | monolayer | 117.1 | 409.9 | −219.9 | −80.41 | −47.1 | −32.35 |
WS2 | monolayer | 37.32 | 43.09 | 53.19 | 73.82 | 134.4 | 382.4 |
WSe2 | monolayer | 40.89 | 47.98 | 61.02 | 90.28 | 204.8 | −454.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Pan, J.; Wu, C.; Li, K.; Ding, H.; Ji, Q.; Yang, M.; Wang, J.; Zhang, H.; Huang, T. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Sensors 2020, 20, 1028. https://doi.org/10.3390/s20041028
Han L, Pan J, Wu C, Li K, Ding H, Ji Q, Yang M, Wang J, Zhang H, Huang T. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Sensors. 2020; 20(4):1028. https://doi.org/10.3390/s20041028
Chicago/Turabian StyleHan, Lei, Jianxing Pan, Chuan Wu, Keliang Li, Huafeng Ding, Qizheng Ji, Ming Yang, Jin Wang, Huijie Zhang, and Tianye Huang. 2020. "Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor" Sensors 20, no. 4: 1028. https://doi.org/10.3390/s20041028
APA StyleHan, L., Pan, J., Wu, C., Li, K., Ding, H., Ji, Q., Yang, M., Wang, J., Zhang, H., & Huang, T. (2020). Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Sensors, 20(4), 1028. https://doi.org/10.3390/s20041028