A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure
Abstract
:1. Introduction
2. Fundamental Theories
2.1. One-Dimensional Convolutional Neural Networks (1D CNNs): Convolution and Pooling
2.2. Transmissibility Function (TF)
3. Construction of the TF-1D CNN Damage Identification Framework
3.1. Construction of Massive TF Datasets
3.2. Construction of the 1D CNN Model
4. Damage Identification in the ASCE Benchmark Structure
4.1. Numerical Model
4.2. Dynamic Response Analysis
4.3. Damage Identification Using the TF-1D CNN Framework
4.4. Noise Effect Analysis
5. Comparison Study
5.1. Comparison of TS- and FFT-Based 1D CNN Methods
5.2. Comparison with the TF-ANN Method
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwabacher, M. A survey of data-driven prognostics. In Proceedings of the Infotech@ Aerospace Conferences, Arlington, Virginia, 26–29 September 2005; p. 7002. [Google Scholar] [CrossRef] [Green Version]
- Cavadas, F.; Smith, I.F.; Figueiras, J. Damage detection using data-driven methods applied to moving-load responses. Mech. Syst. Sig. Process. 2013, 39, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Worden, K.; Manson, G. The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A 2006, 365, 515–537. [Google Scholar] [CrossRef] [PubMed]
- Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L.; Rodellar, J.; Fritzen, C.-P. A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring. Mech. Syst. Sig. Process. 2013, 41, 467–484. [Google Scholar] [CrossRef]
- Bodeux, J.-B.; Golinval, J.-C. Modal identification and damage detection using the data-driven stochastic subspace and ARMAV methods. Mech. Syst. Sig. Process. 2003, 17, 83–89. [Google Scholar] [CrossRef]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring—Present status and applications. Sens. Actuators A 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Cho, S.; Yun, C.-B.; Lynch, J.P.; Zimmerman, A.T.; Spencer, B.F., Jr.; Nagayama, T. Smart wireless sensor technology for structural health monitoring of civil structures. Steel Struct. 2008, 8, 267–275. [Google Scholar]
- Cantero-Chinchilla, S.; Chiachío, J.; Chiachío, M.; Chronopoulos, D.; Jones, A. A robust Bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves. Mech. Syst. Sig. Process. 2019, 122, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Vakil-Baghmisheh, M.-T.; Peimani, M.; Sadeghi, M.H.; Ettefagh, M.M. Crack detection in beam-like structures using genetic algorithms. Appl. Soft Comput. 2008, 8, 1150–1160. [Google Scholar] [CrossRef]
- Tripathi, G.; Anowarul, H.; Agarwal, K.; Prasad, D.K. Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals. Sensors 2019, 19, 4216. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.K.; Sohn, H. Damage diagnosis under environmental and operational variations using unsupervised support vector machine. J. Sound Vib. 2009, 325, 224–239. [Google Scholar] [CrossRef]
- Gui, G.; Pan, H.; Lin, Z.; Li, Y.; Yuan, Z. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J. Civ. Eng. 2017, 21, 523–534. [Google Scholar] [CrossRef]
- Pan, H.; Azimi, M.; Yan, F.; Lin, Z. Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges. J. Bridge Eng. 2018, 23, 04018033. [Google Scholar] [CrossRef]
- Liu, R.; Yang, B.; Zhang, X.; Wang, S.; Chen, X. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Sig. Process. 2016, 75, 345–370. [Google Scholar] [CrossRef]
- Hu, Q.; He, Z.; Zhang, Z.; Zi, Y. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mech. Syst. Sig. Process. 2007, 21, 688–705. [Google Scholar] [CrossRef]
- Lam, H.F.; Yuen, K.V.; Beck, J.L. Structural health monitoring via measured Ritz vectors utilizing artificial neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2006, 21, 232–241. [Google Scholar] [CrossRef]
- Cao, M.; Qiao, P.; Ren, Q. Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures. Neural Comput. Appl. 2009, 18, 821–832. [Google Scholar] [CrossRef]
- Ding, Z.; Cao, M.; Jia, H.; Pan, L.; Xu, H. Structural dynamics-guided hierarchical neural-networks scheme for locating and quantifying damage in beam-type structures. J. Vibroeng. 2014, 16, 3595–3608. [Google Scholar]
- Cao, M.; Pan, L.; Gao, Y.; Novák, D.; Ding, Z.; Lehký, D.; Li, X. Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput. Appl. 2017, 28, 1583–1590. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, B.; Ko, J. Constructing input vectors to neural networks for structural damage identification. Smart Mater. Struct. 2002, 11, 825. [Google Scholar] [CrossRef]
- Cao, M.-S.; Ding, Y.-J.; Ren, W.-X.; Wang, Q.; Ragulskis, M.; Ding, Z.-C. Hierarchical wavelet-aided neural intelligent identification of structural damage in noisy conditions. Appl. Sci. 2017, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Sambath, S.; Nagaraj, P.; Selvakumar, N. Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Nondestr. Eval. 2011, 30, 20–28. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Meng, M.; Chua, Y.J.; Wouterson, E.; Ong, C.P.K. Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 2017, 257, 128–135. [Google Scholar] [CrossRef]
- Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Inman, D. Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications. In Structural Health Monitoring & Damage Detection; Niezrecki, C., Ed.; Springer: Cham, Switzerland, 2017; Volume 7, pp. 49–54. [Google Scholar]
- Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [Google Scholar] [CrossRef]
- Devriendt, C.; Guillaume, P. The use of transmissibility measurements in output-only modal analysis. Mech. Syst. Sig. Process. 2007, 21, 2689–2696. [Google Scholar] [CrossRef]
- Devriendt, C.; Guillaume, P. Identification of modal parameters from transmissibility measurements. J. Sound Vib. 2008, 314, 343–356. [Google Scholar] [CrossRef]
- Devriendt, C.; De Sitter, G.; Vanlanduit, S.; Guillaume, P. Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements. Mech. Syst. Sig. Process. 2009, 23, 621–635. [Google Scholar] [CrossRef]
- Devriendt, C.; De Sitter, G.; Guillaume, P. An operational modal analysis approach based on parametrically identified multivariable transmissibilities. Mech. Syst. Sig. Process. 2010, 24, 1250–1259. [Google Scholar] [CrossRef]
- Johnson, T.J.; Adams, D.E. Transmissibility as a differential indicator of structural damage. J. Vib. Acoust. 2002, 124, 634–641. [Google Scholar] [CrossRef]
- Kong, X.; Cai, C.; Kong, B. Damage detection based on transmissibility of a vehicle and bridge coupled system. J. Eng. Mech. 2014, 141, 04014102. [Google Scholar] [CrossRef]
- Caccese, V.; Mewer, R.; Vel, S.S. Detection of bolt load loss in hybrid composite/metal bolted connections. Eng. Struct. 2004, 26, 895–906. [Google Scholar] [CrossRef]
- Zhu, D.; Yi, X.; Wang, Y. Sensitivity analysis of transmissibility functions for structural damage detection. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011; p. 79832M. [Google Scholar]
- Feng, L.; Yi, X.; Zhu, D.; Xie, X.; Wang, Y. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement. Mech. Syst. Sig. Process. 2015, 60, 59–74. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Cao, H.; Liu, Q.; Wahab, M.A. Output-based structural damage detection by using correlation analysis together with transmissibility. Materials 2017, 10, 866. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Schulz, M.; Naser, A.; Ferguson, F.; Pai, P. Structural health monitoring using transmittance functions. Mech. Syst. Sig. Process. 1999, 13, 765–787. [Google Scholar] [CrossRef]
- Schulz, M.; Pai, P.; Inman, D. Health monitoring and active control of composite structures using piezoceramic patches. Compos. B. Eng. 1999, 30, 713–725. [Google Scholar] [CrossRef]
- Johnson, E.A.; Lam, H.-F.; Katafygiotis, L.S.; Beck, J.L. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. J. Eng. Mech. 2004, 130, 3–15. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Noise | SNR (dB) | |||||||
---|---|---|---|---|---|---|---|---|
50 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | |
Accuracy (%) | 100.00 | 100.00 | 100.00 | 97.70 | 83.03 | 70.42 | 60.91 | 41.27 |
Noise | SNR (dB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
50 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | ||
Accuracy (%) | TS-1D CNN | 11.33 | 11.45 | 11.27 | 11.58 | 11.88 | 10.73 | 10.79 | 11.33 |
FFT-1D CNN | 45.33 | 45.27 | 45.27 | 45.45 | 45.21 | 44.97 | 44.85 | 45.45 |
Noise | SNR (dB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
50 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | ||
Accuracy (%) | TF-1D CNN | 100.00 | 100.00 | 100.00 | 97.70 | 83.03 | 70.42 | 60.91 | 41.27 |
TF-ANN | 96.36 | 95.15 | 90.18 | 71.88 | 43.21 | 30.91 | 23.52 | 18.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Xu, H.; Ragulskis, M.; Cao, M.; Ostachowicz, W. A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure. Sensors 2020, 20, 1059. https://doi.org/10.3390/s20041059
Liu T, Xu H, Ragulskis M, Cao M, Ostachowicz W. A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure. Sensors. 2020; 20(4):1059. https://doi.org/10.3390/s20041059
Chicago/Turabian StyleLiu, Tongwei, Hao Xu, Minvydas Ragulskis, Maosen Cao, and Wiesław Ostachowicz. 2020. "A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure" Sensors 20, no. 4: 1059. https://doi.org/10.3390/s20041059
APA StyleLiu, T., Xu, H., Ragulskis, M., Cao, M., & Ostachowicz, W. (2020). A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure. Sensors, 20(4), 1059. https://doi.org/10.3390/s20041059