An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform
Abstract
:1. Introduction
2. Experimental Procedure for US Inspection on Agar-phantoms and Liver Tissue
2.1. Experimental Set-Up
2.2. Design and Manufacture of Agar-Phantoms with Agar-Spherical Inclusions
2.3. Design and Manufacture of Liver Tissues Phantoms with Agar Inclusions with Non-Regular Geometrical Shape
- 1)
- Inclusion type I: Rather spherical inclusions of small dimensions (typically 2–3 mm wide) obtained introducing a small amount of solution within the intact liver;
- 2)
- Inclusion type II: Extended inclusions which filled almost entirely the channel produced by the syringe tip inserted into the tissue. They were obtained going on injecting a solution in the tissue while extracting the syringe;
- 3)
- Inclusion Type III: Inclusions with the form of the open vessels (vein or artery) that we found in the dissection of the liver tissues and we utilized as a tube to be filled from the outside with the agar solution.
3. The Data Analysis Approach for Detection and Localization of Inclusions Based on the Combination of Correlation Indexes Related to Shape and Amplitude of Reflected Signals
4. Experimental Results
4.1. Results on Agar Phantoms
4.2. Results on Liver Tissue Phantoms
4.3. Confusion Matrix Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoffmann, K.; El Gammal, S.; Altmeyer, P.; Freitag, M.; Hermes, N.; Schwarze, H.P.; Stücker, M. High-Frequency Ultrasound of Skin Tumors. Ultrasound Dermatol. 1997, 181–201. [Google Scholar] [CrossRef]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.L.; Pollack, E.; Mollura, D.J.; Mullen, L.; Harvey, S.C. Ultrasound for breast cancer detection globally: A systematic review and meta-analysis. J. Glob. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wildeboer, R.R.; Van Sloun, R.J.G.; Postema, A.W.; Mannaerts, C.K.; Gayet, M.; Beerlage, H.P.; Wijkstra, H.; Mischi, M. Accurate validation of ultrasound imaging of prostate cancer: A review of challenges in registration of imaging and histopathology. J. Ultrasound 2018, 21, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoș, A.; Iancu, I.; Breazu, C.; Bartoș, D. Intraoperative Ultrasound of the Liver: Actual Status and Indications. Liver Res. Clin. Manag. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Kennish, S.; Smith, A.J. Intraoperative ultrasound. In Clinical Ultrasound, 3rd ed.; Churchill Livingstone: London, UK, 2011; Volume 1, pp. 273–281. [Google Scholar] [CrossRef]
- Pan, H.B. The Role of Breast Ultrasound in Early Cancer Detection. J. Med. Ultrasound 2016, 24, 138–141. [Google Scholar] [CrossRef]
- Reiko, A.; Sachiko, T.; Hiromi, Y.; Suetsumi, O.; Keiko, N.; Junko, F.; Miko, N.; Tatsuya, I.; Kazuhiro, K. The role of transabdominal ultrasound in the diagnosis of early stage pancreatic cancer: Review and single-center experience. Diagnostics 2019, 9, 2. [Google Scholar]
- Szabo, T.L. Diagnostic Ultrasound Imaging: Inside Out, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; ISBN 9780123964878. [Google Scholar]
- Ahn, S.E.; Park, S.J.; Moon, S.K.; Lee, D.H.; Lim, J.W. Sonography of Abdominal Wall Masses and Mass like Lesions Correlation with Computed Tomography and Magnetic Resonance Imaging. J. Ultrasound Med. 2016, 35, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Rebolj, M.; Assi, V.; Brentnall, A.; Parmar, D.; Duffy, S.W. Addition of ultrasound to mammography in the case of dense breast tissue: Systematic review and meta-analysis. Br. J. Cancer 2018, 118, 1559–1570. [Google Scholar] [CrossRef]
- Methil, N.S.; Shen, Y.; Zhu, D.; Pomeroy, C.A.; Mukherjee, R.; Xi, N.; Mutka, M. Development of Supermedia Interface for Telediagnostics of Breast Pathology. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3911–3916. [Google Scholar]
- Naidu, A.S.; Naish, M.D.; Patel, R.V. A Breakthrough in Tumor Localization, Combining Tactile Sensing and Ultrasound to Improve Tumor Localization in Robotics-Assisted Minimally Invasive Surgery. IEEE Robot. Autom. Mag. 2017, 54–62. [Google Scholar] [CrossRef]
- Chung, D.H.; Silversmith, D.J.; Chick, B.B. A modified ultrasonic pulse-echo-overlap method for determining sound velocities and attenuation of solids. Rev. Sci. Instrum. 1969, 40, 718–720. [Google Scholar] [CrossRef]
- McSkimin, H.J. Pulse superposition method for measuring ultrasonic wave velocities in solids. J. Acoust. Soc. Am. 1961, 33, 12–16. [Google Scholar] [CrossRef]
- Papadakis, E.P. Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase correlations. J. Acoust. Soc. Am. 1967, 42, 1045–1051. [Google Scholar] [CrossRef]
- Robinson, D.E.; Chen, F.; Wilson, L.S. Measurement of velocity of propagation from ultrasonic pulse-echo data. Ultrasound Med. Biol. 1982, 8, 413–420. [Google Scholar] [CrossRef]
- Apparatus for the Ex-Vivo Intraoperative Analysis of Biological Tissue Samples. WO2019142109 (A1), 25 July 2019.
- Massari, L.; Bulletti, A.; Prasanna, S.; Mazzoni, M.; Frosini, F.; Vicari, E.; Pantano, M.; Staderini, F.; Ciuti, G.; Cianchi, F.; et al. A Mechatronic Platform for Computer Aided Detection of Nodules in Anatomopathological Analyses via Stiffness and Ultrasound Measurements. Sensors 2019, 19, 2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.F.; Zagzebski, J.A.; Lee, F.T. Ultrasound backscatter and attenuation in human liver with diffuse disease. Ultrasound Med. Biol. 1999, 25, 1047–1054. [Google Scholar] [CrossRef]
- Ophir, J.; Shawker, T.H.; Maklad, N.F.; Miller, J.G.; Flax, S.W.; Narayana, P.A.; Joness, J.P. Attenuation estimation in reflection: Progress and prospects. Ultrason. Imaging 1984, 6, 349–395. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.C. Attenuation and absorption. In Physical Principles of Medical Ultrasonics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 978-0-471-97002-6. [Google Scholar]
- Moran, C.M.; Bush, N.L.; Bamber, J.C. Ultrasonic propagation properties of excised human skin. Ultrasound Med. Biol. 1995, 21, 1177–1190. [Google Scholar] [CrossRef]
- Cleary, K.; Melzer, A.; Watson, V.; Kronreif, G.; Stoianovici, D. Interventional robotic systems: Applications and technology state-of-the-art. Minim. Invasive Ther. Allied Technol. 2009, 15, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Kuc, R.; Regula, D.P., Jr. Diffraction Effects in Reflected Ultrasound Spectral Estimates. IEEE Trans. Biomed. Eng. 1984, 8, 537–545. [Google Scholar] [CrossRef]
- Zagzebski, J.A. Essentials of Ultrasound Physics, 1st ed.; Mosby: St. Louis, MO, USA, 1996; Volume 7, pp. 123–145. [Google Scholar]
- Morse, P.M.; Ingard, K.U. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Sohn, H.; Kim, S.B. Development of Dual PZT Transducers for Reference-Free Crack Detection in Thin Plate Structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 229–240. [Google Scholar] [CrossRef]
- Mazzoni, M.; Capineri, L.; Masotti, L. A Large-Area PVDF Pyroelectric Sensor for CO2 Laser Beam Alignment. IEEE Sens. J. 2007, 7, 1159–1164. [Google Scholar] [CrossRef]
CIA | |
9666 | 1397 |
87.37% | 12.63% |
TN | FP |
569 | 1976 |
22.36% | 77.64% |
FN | TP |
CIS | |
10838 | 225 |
97.97% | 2.03% |
TN | FP |
915 | 1630 |
35.95% | 64.05% |
FN | TP |
CIA AND CIS | |
10963 | 100 |
99.10% | 0.90% |
TN | FP |
1195 | 1350 |
46.95% | 53.05% |
FN | TP |
CIA OR CIS | |
9343 | 1720 |
84.45% | 15.55% |
TN | FP |
291 | 2254 |
11.43% | 88.57% |
FN | TP |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulletti, A.; Mazzoni, M.; Prasanna, S.; Massari, L.; Menciassi, A.; Oddo, C.M.; Capineri, L. An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform. Sensors 2020, 20, 1183. https://doi.org/10.3390/s20041183
Bulletti A, Mazzoni M, Prasanna S, Massari L, Menciassi A, Oddo CM, Capineri L. An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform. Sensors. 2020; 20(4):1183. https://doi.org/10.3390/s20041183
Chicago/Turabian StyleBulletti, Andrea, Marina Mazzoni, Sahana Prasanna, Luca Massari, Arianna Menciassi, Calogero Maria Oddo, and Lorenzo Capineri. 2020. "An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform" Sensors 20, no. 4: 1183. https://doi.org/10.3390/s20041183
APA StyleBulletti, A., Mazzoni, M., Prasanna, S., Massari, L., Menciassi, A., Oddo, C. M., & Capineri, L. (2020). An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform. Sensors, 20(4), 1183. https://doi.org/10.3390/s20041183