Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation
Abstract
:1. Introduction
2. Electromagnetic Tracking System (EMTS) Overview
3. Hardware Development
3.1. DAQ Synchronization
3.2. Analysis of the Electronic Board
3.3. Improved DAQ Devices
3.4. Cable’s Shielding
4. Performance Analysis
4.1. Induced Voltage Repeatability
4.2. Induced Voltage Drift
5. Validation Tests
5.1. Repeatability Error Evaluation
5.2. Test Protocol and Results
5.3. Analysis of Drift Effect
5.4. Comparison with the State of the Art
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- (i)
- For the i-th coil, the regulated variable was evaluated by considering all the five harmonic components () present in the current measured on the i-th channel. Then, the following expression was used:
- (ii)
- For the i-th coil, the regulated variable was evaluated by considering current components in the five coils at the same frequency fi. Then, the following expression was used:
- (iii)
- For the i-th coil, only the current component at was considered.
- (iv)
- For the i-th coil, the measured current signal was used directly, without any filtering.
References
- Peters, T.; Cleary, K. Image-Guided Interventions: Technology and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ren, Z.; Yang, W.Q. Development of a Navigation Tool for Revision Total Hip Surgery Based on Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2016, 65, 2748–2757. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, Y.; Wang, Y. Pipeline Architecture and Parallel Computation-Based Real-Time Stereovision Tracking System for Surgical Navigation. IEEE Trans. Instrum. Meas. 2010, 59, 1240–1250. [Google Scholar] [CrossRef]
- Grimson, W.E.L.; Kikinis, R.; Jolesz, F.A.; Black, P.M. Image-Guided Surgery. Sci. Am. 1999, 280, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bao, N.; Li, J.; Kang, Y. A review of surgery navigation system based on ultrasound guidance. In Proceedings of the IEEE International Conference on Information and Automation, Shenyang, China, 6–8 June 2012. [Google Scholar]
- Andria, G.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L.; Maiorana, A.; Mangiatini, M.; Spadavecchia, M. Dosimetric Characterization and Image Quality Assessment in Breast Tomosynthesis. IEEE Trans. Instrum. Meas. 2017, 66, 2535–2544. [Google Scholar] [CrossRef]
- Paul, M.C.; Larman, A. Investigation of spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 2009, 31, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbiano, L.; Vacca, G.; Morello, R.; De Capua, C. An Innovative Strategy for Correctly Interpreting Simultaneous Acquisition of EEG Signals and FMRI Images. IEEE Sens. J. 2013, 13, 3175–3181. [Google Scholar] [CrossRef]
- Bachar, G.; Siewerdsen, J.H.; Daly, M.J.; Jaffray, D.A.; Irish, J.C. Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery. Med. Phys. 2007, 34, 4664–4677. [Google Scholar] [CrossRef]
- Andria, G.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L.; Guglielmi, G.; Terlizzi, R. Dose Optimization in Chest Radiography: System and Model Characterization via Experimental Investigation. IEEE Trans. Instrum. Meas. 2013, 63, 1163–1170. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Percoco, G.; Lavecchia, F.; Di Gioia, E. Noninvasive Computerized Scanning Method for the Correlation Between the Facial Soft and Hard Tissues for an Integrated Three-Dimensional Anthropometry and Cephalometry. J. Craniofac. Surg. 2013, 24, 797–804. [Google Scholar] [CrossRef]
- Casap, N.; Tarazi, E.; Wexler, A.; Sonnenfeld, U.; Lustmann, J. Intraoperative computerized navigation for flapless implant surgery and immediate loading in the edentulous mandible. J. Prosthet. Dent. 2005, 94, 201. [Google Scholar] [CrossRef]
- Andria, G.; Attivissimo, F.; Cavone, G.; Lanzolla, A. Acquisition Times in Magnetic Resonance Imaging: Optimization in Clinical Use. IEEE Trans. Instrum. Meas. 2009, 58, 3140–3148. [Google Scholar] [CrossRef]
- Jaeger, H.A.; Cantillon-Murphy, P. Electromagnetic Tracking Using Modular, Tiled Field Generators. IEEE Trans. Instrum. Meas. 2019, 68, 4845–4852. [Google Scholar] [CrossRef]
- Zhang, H.; Banovac, F.; Lin, R.; Glossop, N.; Wood, B.J.; Lindisch, D.; Levy, E.; Cleary, K. Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput. Aided Surg. 2006, 11, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, A.M.; Haidegger, T.; Birkfellner, W.; Cleary, K.; Peters, T.M.; Maier-Hein, L. Electromagnetic Tracking in Medicine—A Review of Technology, Validation, and Applications. IEEE Trans. Med. Imaging 2014, 33, 1702–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, A.M.; Seitel, A.; Cheray, D.; Maier-Hein, L. Polhemus EM Tracked Micro Sensor for CT-guided interventions. Med. Phys. 2018, 46, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attivissimo, F.; Lanzolla, A.M.L.; Carlone, S.; Larizza, P.; Brunetti, G. A novel electromagnetic tracking system for surgery navigation. Comput. Assist. Surg. 2018, 23, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Andria, G.; Attivissimo, F.; di Nisio, A.; Lanzolla, A.M.L.; Larizza, P.; Selicato, S. Development and performance evaluation of an electromagnetic tracking system for surgery navigation. Measurement 2019, 148, 106916. [Google Scholar] [CrossRef]
- Ragolia, M.A.; Andria, G.; Attivissimo, F.; di Nisio, A.; Lanzolla, A.M.L.; Spadavecchia, M.; Larizza, P.; Brunetti, G. Performance analysis of an electromagnetic tracking system for surgical navigation. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019. [Google Scholar]
- Available online: https://www.ndigital.com/medical/products/tools-and-sensors (accessed on 10 April 2019).
- IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields. 0–3 kHz, Std. C95.6-2002. Available online: https://www.sandiegocounty.gov/content/dam/sdc/pds/ceqa/Soitec-Documents/Final-EIR-Files/references/rtcref/ch9.0/RTCrefappx/2014-12-19_IEEE2002.pdf (accessed on 5 January 2020).
- IEEE Standard for Safety Levels with Respect to Human Exposure to Radio requency Electromagnetic Fields, 3 kHz to 300 GHz. Std. C95.1-2005, Revision of IEEE Std C95.1-1991. 2006. Available online: http://emfguide.itu.int/pdfs/C95.1-2005.pdf (accessed on 5 January 2020).
- Mitsubishi Industrial Robot RV-2F-D Series Standard Specifications Manual (CR750-D/CR751-D Controller). Available online: https://dl.mitsubishielectric.com/dl/fa/document/manual/robot/bfp-a8900/bfp-a8900aa.pdf (accessed on 5 January 2020).
- Duan, Z.; Yuan, Z.; Liao, X.; Si, W.; Zhao, J. 3D Tracking and Positioning of Surgical Instruments in Virtual Surgery Simulation. J. Multimed. 2011, 6, 502–509. [Google Scholar] [CrossRef]
- Attivissimo, F.; Di Nisio, A.; Carducci, C.G.C.; Spadavecchia, M. Fast Thermal Characterization of Thermoelectric Modules Using Infrared Camera. IEEE Trans. Instrum. Meas. 2016, 66, 305–314. [Google Scholar] [CrossRef]
- Shekhar, H.; Kumar, J.S.J.; Ashok, V.; Juliet, A.V. Applied Medical Informatics Using LabVIEW. Int. J. Comput. Sci. Eng. 2010, 2, 198–203. [Google Scholar]
- Tapani, K.; Katisko, J.P.; Koivukangas, J.P. Technical accuracy of optical and the electromagnetic tracking systems. SpringerPlus 2013, 2, 90. [Google Scholar]
Distance (m) | f1 | f2 | f3 | f4 | f5 | |
---|---|---|---|---|---|---|
Before improvement | 0.7 | 19.75% | 0.15% | 1.53% | 0.08% | 0.11% |
1.0 | 13.90% | 0.40% | 6.95% | 0.19% | 0.31% | |
After improvement | 0.7 | 1.13% | 0.04% | 1.06% | 0.03% | 0.03% |
1.0 | 3.03% | 0.13% | 1.09% | 0.10% | 0.07% | |
Reduction | 0.7 | 94% | 73% | 31% | 62% | 72% |
1.0 | 78% | 68% | 84% | 47% | 77% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andria, G.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L.; Ragolia, M.A. Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation. Sensors 2020, 20, 961. https://doi.org/10.3390/s20040961
Andria G, Attivissimo F, Di Nisio A, Lanzolla AML, Ragolia MA. Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation. Sensors. 2020; 20(4):961. https://doi.org/10.3390/s20040961
Chicago/Turabian StyleAndria, Gregorio, Filippo Attivissimo, Attilio Di Nisio, Anna Maria Lucia Lanzolla, and Mattia Alessandro Ragolia. 2020. "Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation" Sensors 20, no. 4: 961. https://doi.org/10.3390/s20040961
APA StyleAndria, G., Attivissimo, F., Di Nisio, A., Lanzolla, A. M. L., & Ragolia, M. A. (2020). Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation. Sensors, 20(4), 961. https://doi.org/10.3390/s20040961