Preparation of “Ion-Imprinting” Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions
Abstract
:1. Introduction
2. Experimental
2.1. Material and Methods
2.2. Measurements
2.2.1. Synthesis of CdTe/CdS Quantum Dots
2.2.2. Synthesis of DMFN
2.2.3. DMFN for Detecting Cd2+ in Water
3. Results and Discussion
3.1. Characterization of DMFN
3.2. Determination Mechanism of Cd2+
3.3. Influence of Differing pH on the DMFN
3.4. Influence of Different Concentrations of EDTA on the Detection System
3.5. Influence of Different Metal Ions on the Detection System
3.6. Determination of Cadmium Ions in Water
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Desoize, B. Metals and metal compounds in carcinogenesis. Vivo 2003, 17, 529–539. [Google Scholar]
- Prozialeck, W.C.; Edwards, J.R.; Woods, J.M. The vascular endothelium as a target of cadmium toxicity. Life Sci. 2006, 79, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Thevenod, F.; Lee, W.K. Live and Let Die: Roles of Autophagy in Cadmium Nephrotoxicity. Toxics 2015, 3, 130–151. [Google Scholar] [CrossRef] [PubMed]
- Sabolic, I. Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Berlina, A.N.; Zherdev, A.V.; Dzantiev, B.B. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Microchim. Acta 2019, 186, 172. [Google Scholar] [CrossRef]
- Pourreza, N.; Zavvar Mousavi, H. Determination of cadmium by flame atomic absorption spectrometry after preconcentration on naphthalene–methyltrioctylammonium chloride adsorbent as tetraiodocadmate (II) ions. Anal. Chim. Acta 2004, 503, 279–282. [Google Scholar] [CrossRef]
- Sun, R.; Ma, G.; Duan, X.; Sun, J. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 141, 22–27. [Google Scholar] [CrossRef]
- He, D.; Zhu, Z.; Miao, X.; Zheng, H.; Li, X.; Belshaw, N.S.; Hu, S. Determination of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry. Microchem. J. 2019, 148, 561–567. [Google Scholar] [CrossRef]
- Priya, T.; Dhanalakshmi, N.; Thennarasu, S.; Thinakaran, N. A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/κ-carrageenan/l-cysteine nanocomposite. Carbohydr. Polym. 2018, 182, 199–206. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta 2014, 181, 1199–1206. [Google Scholar] [CrossRef]
- Prasek, J.; Adamek, M.; Hubalek, J.; Adam, V.; Trnkova, L.; Kizek, R. New Hydrodynamic Electrochemical Arrangement for Cadmium Ions Detection Using Thick-Film Chemical Sensor Electrodes. Sensors 2006, 6, 1498–1512. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Yan, X.-P. A simple chemical etching strategy to generate “ion-imprinted” sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chem. Commun. 2010, 46, 7046–7048. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells. J. Am. Chem. Soc. 2007, 129, 1500–1501. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, H.; Kang, Y.; Lee, Y.; Yoon, Y. A Biosensor Platform for Metal Detection Based on Enhanced Green Fluorescent Protein. Sensors 2019, 19, 1846. [Google Scholar] [CrossRef] [Green Version]
- Koehler, F.M.; Rossier, M.; Waelle, M.; Athanassiou, E.K.; Limbach, L.K.; Grass, R.N.; Günther, D.; Stark, W.J. Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chem. Commun. 2009, 4862–4864. [Google Scholar] [CrossRef]
- Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Zhou, Q.; Lei, M.; Liu, Y.; Wu, Y.; Yuan, Y. Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography. Talanta 2017, 175, 194–199. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, C.; Zhang, L.; Liu, H.; Cao, B.; Liu, L.; Gong, W. Adsorption studies of cadmium onto magnetic Fe3O4@FePO4 and its preconcentration with detection by electrothermal atomic absorption spectrometry. Talanta 2018, 181, 352–358. [Google Scholar] [CrossRef]
- Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013, 67, 215–252. [Google Scholar] [CrossRef] [Green Version]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jiang, C.; Wang, X.; Wang, L.; Chen, A.; Hu, J.; Luo, Z. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst 2016, 141, 5886–5892. [Google Scholar] [CrossRef] [PubMed]
- Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf. B Biointerfaces 2013, 102, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Corr, S.A.; Rakovich, Y.P.; Gun’ko, Y.K. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications. Nanoscale Res. Lett. 2008, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.N.; Wang, J.; Li, W.T.; Han, H.Y. Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem. Commun. 2012, 48, 4971–4973. [Google Scholar] [CrossRef] [Green Version]
Place | Measured Value of the Sample (μM) | Added Standard Value (μM) | Measured Standard Value (μM) | Recovery | Average Recovery |
---|---|---|---|---|---|
Estuary of River of Hepu | 0 | 2 | 1.61 | 80.5 | 85.95 |
0 | 6 | 5.25 | 87.5 | ||
Nanliu River of Yulin | 0 | 2 | 1.73 | 86.5 | |
0 | 6 | 5.36 | 89.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Lu, Y.; Qin, M.; Liu, F.; Huang, L.; Wang, J.; Xu, H.; Li, N.; Huang, G.; Luo, Z.; et al. Preparation of “Ion-Imprinting” Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. Sensors 2020, 20, 995. https://doi.org/10.3390/s20040995
Chen L, Lu Y, Qin M, Liu F, Huang L, Wang J, Xu H, Li N, Huang G, Luo Z, et al. Preparation of “Ion-Imprinting” Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. Sensors. 2020; 20(4):995. https://doi.org/10.3390/s20040995
Chicago/Turabian StyleChen, Lina, Yue Lu, Minshu Qin, Fa Liu, Liang Huang, Jing Wang, Hui Xu, Na Li, Guobao Huang, Zhihui Luo, and et al. 2020. "Preparation of “Ion-Imprinting” Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions" Sensors 20, no. 4: 995. https://doi.org/10.3390/s20040995
APA StyleChen, L., Lu, Y., Qin, M., Liu, F., Huang, L., Wang, J., Xu, H., Li, N., Huang, G., Luo, Z., & Zheng, B. (2020). Preparation of “Ion-Imprinting” Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. Sensors, 20(4), 995. https://doi.org/10.3390/s20040995