Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Data Acquisition
3.2. Post-Surgery Recovery and Data Recording
3.3. HI Micro-Scale Transients
3.4. Method Description
3.5. Wavelet Power Spectral Density
3.6. Pseudo-Frequency Approximation
3.7. FFT-Type-1-FLC Classifier
4. Performance Measures
5. Results
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Drury, P.P.; Gunn, E.R.; Bennet, L.; Gunn, A.J. Mechanisms of Hypothermic Neuroprotection. Clin. Perinatol. 2014, 41, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Thoresen, M. Animal studies of neonatal hypothermic neuroprotection have translated well in to practice. Resuscitation 2015, 97, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, C.E.; Boylan, G.B.; Murray, D.M. Short and long term prognosis in perinatal asphyxia: An update. World J. Clin. Pediatrics 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Bennet, L. Timing of injury in the fetus and neonate. Curr. Opin. Obstet. Gynecol. 2008, 20, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Bennet, L.; Booth, L.; Gunn, A.J. Potential biomarkers for hypoxic-ischemic encephalopathy. Semin. Fetal Neonatal Med. 2010, 15, 253–260. [Google Scholar] [CrossRef] [Green Version]
- George, S.; Gunn, A.J.; Westgate, J.A.; Brabyn, C.; Guan, J.; Bennet, L. Fetal heart rate variability and brain stem injury after asphyxia in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R925–R933. [Google Scholar] [CrossRef]
- Bennet, L.; Roelfsema, V.; Pathipati, P.; Quaedackers, J.S.; Gunn, A.J. Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J. Physiol. 2006, 572, 141–154. [Google Scholar] [CrossRef]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. 2D wavelet scalogram training of deep convolutional neural network for automatic identification of micro-scale sharp wave biomarkers in the hypoxic-ischemic EEG of preterm sheep. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1825–1828. [Google Scholar]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Automatically identified micro-scale sharp-wave transients in the early-latent phase of hypoxic-ischemic EEG from preterm fetal sheep reveal timing relationship to subcortical neuronal survival. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 7084–7087. [Google Scholar]
- Abbasi, H.; Drury, P.P.; Lear, C.A.; Gunn, A.J.; Davidson, J.O.; Bennet, L.; Unsworth, C.P. EEG sharp waves are a biomarker of striatal neuronal survival after hypoxia-ischemia in preterm fetal sheep. Sci. Rep. 2018, 8, 16312. [Google Scholar] [CrossRef]
- Bennet, L.; Dean, J.M.; Wassink, G.; Gunn, A.J. Differential effects of hypothermia on early and late epileptiform events after severe hypoxia in preterm fetal sheep. J. Neurophysiol. 2007, 97, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Gunn, A.I.; Drury, P.P. The pharmacology of hypothermia. In Neonatal Neural Rescue: A Clinical Guide; Edwards, A.D., Azzopardi, D.V., Gunn, A.J., Eds.; Cambridge University Press: New York, NY, USA, 2013; pp. 73–84. [Google Scholar] [CrossRef]
- Gunn, A.J.; Bennet, L. Timing still key to treating hypoxic ischaemic brain injury. Lancet Neurol. 2016, 15, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, H.; Gunn, A.J.; Bennet, L.; Unsworth, C.P. Reverse Bi-orthogonal wavelets & fuzzy classifiers for the automatic detection of spike waves in the EEG of the hypoxic ischemic pre-term fetal sheep. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5404–5407. [Google Scholar]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Identifying stereotypic evolving micro-scale seizures (SEMS) in the hypoxic-ischemic EEG of the pre-term fetal sheep with a wavelet type-II fuzzy classifier. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 97–976. [Google Scholar]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Robust wavelet stabilized Footprints of Uncertainty for fuzzy system classifiers to automatically detect sharp waves in the EEG after hypoxia ischemia. Int. J. Neural Syst. 2017, 27, 1650051. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Unsworth, C.P. Electroencephalogram studies of hypoxic ischemia in fetal and neonatal animal models. Neural Regen. Res. 2020, 15, 828–837. [Google Scholar] [PubMed]
- Abbasi, H.; Unsworth, C.P. Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalogram. Neural Regen. Res. 2020, 15, 222–231. [Google Scholar] [PubMed]
- Abbasi, H.; Unsworth, C.P.; Gunn, A.J.; Bennet, L. Superiority of high frequency hypoxic ischemic EEG signals of fetal sheep for sharp wave detection using Wavelet-Type 2 Fuzzy classifiers. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 1893–1896. [Google Scholar]
- Abbasi, H.; Bennet, L.; Gunn, A.J.; Unsworth, C.P. Latent Phase Detection of Hypoxic-Ischemic Spike Transients in the EEG of Preterm Fetal Sheep Using Reverse Biorthogonal Wavelets & Fuzzy Classifier. Int. J. Neural Syst. 2019, 1950013. [Google Scholar] [CrossRef]
- Abbasi, H. Investigating Micro-Scale EEG Transients as Potential Biomarkers for Early Prediction of Hypoxic Ischemia and Their Relationship to Perinatal Preterm Brain Injury. Ph.D Thesis, University of Auckland, Auckland, New Zealand, 2017. [Google Scholar]
- Bragin, A.; Engel, J., Jr.; Staba, R.J. High-frequency oscillations in epileptic brain. Curr. Opin. Neurol 2010, 23, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.; Zijlmans, M.; Kahane, P.; Dubeau, F.; Navarro, V.; Gotmanh, J. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 2012, 98, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Walbran, A.C.; Unsworth, C.P.; Gunn, A.J.; Bennet, L. A semi-automated method for epileptiform transient detection in the EEG of the fetal sheep using time-frequency analysis. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC), Minneapolis, MN, USA, 3–6 September 2009; pp. 17–20. [Google Scholar]
- Walbran, A.C.; Unsworth, C.P.; Gunn, A.J.; Bennet, L. Spike detection in the preterm fetal sheep EEG using Haar wavelet analysis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 7063–7066. [Google Scholar]
- Abbasi, H.; Unsworth, C.P.; McKenzie, A.C.; Gunn, A.J.; Bennet, L. Using type-2 fuzzy logic systems for spike detection in the hypoxic ischemic EEG of the preterm fetal sheep. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 938–941. [Google Scholar]
- Bernardo, D.; Nariai, H.; Hussain, S.A.; Sankar, R.; Salamon, N.; Krueger, D.A.; Sahin, M.; Northrup, H.; Bebin, E.M.; Wu, J.Y. Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex. Clin. Neurophysiol. 2018, 129, 1458–1466. [Google Scholar] [CrossRef]
- Birot, G.; Kachenoura, A.; Albera, L.; Bénar, C.; Wendling, F. Automatic detection of fast ripples. J. Neurosci. Methods 2013, 213, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Quach, M.M.; Curry, D.J.; Ummat, M.; Seto, E.; Ince, N.F. High-frequency oscillations detected in EC oG recordings correlate with cavernous malformation and seizure-free outcome in a child with focal epilepsy: A case report. Epilepsia Open 2017, 2, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Burnos, S.; Hilfiker, P.; Sürücü, O.; Scholkmann, F.; Krayenbühl, N.; Grunwald, T.; Sarnthein, J. Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis. PLoS ONE 2014, 9, e94381. [Google Scholar] [CrossRef]
- White, A.M.; Williams, P.A.; Ferraro, D.J.; Clark, S.; Kadam, S.D.; Dudek, F.E.; Staley, K.J. Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J. Neurosci. Methods 2006, 152, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Cuaycong, M.; Engel, M.; Weinstein, S.L.; Salmon, E.; Perlman, J.M.; Sunderam, S.; Vannucci, S.J. A novel approach to the study of hypoxia-ischemia-induced clinical and subclinical seizures in the neonatal rat. Dev. Neurosci. 2011, 33, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Tieng, Q.M.; Kharatishvili, I.; Chen, M.; Reutens, D.C. Mouse EEG spike detection based on the adapted continuous wavelet transform. J. Neural Eng. 2016, 13, 026018. [Google Scholar] [CrossRef] [PubMed]
- Deburchgraeve, W.; Cherian, P.J.; De Vos, M.; Swarte, R.M.; Blok, J.H.; Visser, G.H.; Van Huffel, S. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 2008, 119, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.H.; Cherian, P.J.; Dorado, A.C.; Jansen, K.; Dereymaeker, A.; De Wispelaere, L.; Naulaers, G. Weighted performance metrics for automatic neonatal seizure detection using multiscored EEG data. IEEE J. Biomed. Health Inform. 2017, 22, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.H.; Cherian, P.J.; Caicedo, A.; Naulaers, G.; De Vos, M.; Van Huffel, S. Neonatal seizure detection using deep convolutional neural networks. Int. J. Neural Syst. 2019, 29, 1850011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moraes, F.D.; Callegari, D.A. Automated Detection of Interictal Spikes in EEG: A literature review. Clin. Neurophysiol. 2014, 1095–1103. [Google Scholar]
- Barlow, R. The foetal sheep: Morphogenesis of the nervous system and histochemical aspects of myelination. J. Comp. Neurol. 1969, 135, 249–261. [Google Scholar] [CrossRef]
- Daroff, R.B.; Aminoff, M.J. Encyclopedia of the Neurological Sciences; Academic press: Cambridge, MA, USA, 2014. [Google Scholar]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef]
- Dean, J.M.; George, S.A.; Wassink, G.; Gunn, A.J.; Bennet, L. Suppression of post-hypoxic-ischemic EEG transients with dizocilpine is associated with partial striatal protection in the preterm fetal sheep. Neuropharmacology 2006, 50, 491–503. [Google Scholar] [CrossRef]
- Bennet, L.; Rossenrode, S.; Gunning, M.; Gluckman, P.; Gunn, A. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J. Physiol. (Lond.) 1999, 517, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.O.; Quaedackers, J.S.L.T.; George, S.A.; Gunn, A.J.; Bennet, L. Maternal dexamethasone and EEG hyperactivity in preterm fetal sheep. J. Physiol. 2011, 589, 3823–3835. [Google Scholar] [CrossRef]
- Scher, M.S.; Hamid, M.Y.; Steppe, D.A.; Beggarly, M.E.; Painter, M.J. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 1993, 34, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Halford, J.J. Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation. Clin. Neurophysiol. 2009, 120, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform; Wiley: Chichester, UK, 2001. [Google Scholar]
- Philips, C.L.; Parr, J.M.; Riskin, E. Signals, Systems, and Transforms; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Vretblad, A. Fourier Analysis and Its Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Abry, P. Ondelettes et Turbulences: Multirésolutions, Algorithmes de Décomposition, Invariance d’échelle et Signaux de Pression; Diderot Multimédia: Paris, France, 1997. [Google Scholar]
- Rajagopalan, V.; Ray, A. Symbolic time series analysis via wavelet-based partitioning. Signal Process. 2006, 86, 3309–3320. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
Scale Number | Pseudo Freq. (Hz) | Wavelet Length (ms) |
---|---|---|
1 | 602.491 | 1.700 |
2 | 301.246 | 3.399 |
3 | 200.830 | 5.099 |
4 | 150.623 | 6.798 |
5 | 120.498 | 8.498 |
6 | 100.415 | 10.198 |
7 | 86.070 | 11.897 |
8 | 75.311 | 13.597 |
9 | 66.943 | 15.296 |
10 | 60.249 | 16.996 |
11 | 54.772 | 18.696 |
12 | 50.208 | 20.395 |
Sheep No. | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|
Maximum Tot. Performance (%) | 99.90 | 99.03 | 99.75 | 97.24 | 97.96 | 98.52 | 100.00 |
At Threshold | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.15 | 0.10 |
Sheep No. | Sheep a | Sheep b | Sheep c | Sheep d | Sheep e | Sheep f | Sheep g | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Occlusion Length (min) | 25 | 25 | 25 | 19 | 15 | 25 | 15 | |||||||||||||||
Detection Type: | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | |
Time—Post HI (min): | ||||||||||||||||||||||
30 (reperfusion phase) | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |
60 | 15 | 0 | 0 | 4 | 0 | 0 | 10 | 0 | 0 | 131 | 0 | 1 | 210 | 3 | 8 | 9 | 1 | 0 | 48 | 0 | 0 | |
90 | 58 | 0 | 0 | 31 | 1 | 0 | 130 | 0 | 0 | 754 | 0 | 2 | 63 | 0 | 0 | 65 | 0 | 0 | 10 | 0 | 0 | |
120 | 118 | 0 | 0 | 13 | 0 | 0 | 10 | 1 | 0 | 210 | 0 | 0 | 36 | 1 | 2 | 256 | 0 | 4 | 6 | 0 | 0 | |
150 | 59 | 0 | 0 | 7 | 0 | 0 | 1 | 0 | 0 | 78 | 0 | 0 | 35 | 2 | 0 | 43 | 0 | 3 | 8 | 0 | 0 | |
180 | 57 | 0 | 0 | 8 | 0 | 0 | 1 | 0 | 0 | 44 | 0 | 0 | 24 | 0 | 1 | 0 | 0 | 0 | 20 | 0 | 0 | |
210 | 71 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | |
240 | 34 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 20 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | |
270 | 51 | 0 | 0 | 3 | 0 | 0 | 7 | 0 | 0 | 14 | 0 | 11 | 30 | 0 | 1 | 10 | 0 | 1 | 3 | 0 | 0 | |
300 | 25 | 0 | 0 | 6 | 0 | 0 | 18 | 0 | 0 | 43 | 1 | 10 | 23 | 0 | 0 | 4 | 0 | 0 | 5 | 0 | 0 | |
330 | 14 | 0 | 0 | 10 | 0 | 0 | 9 | 0 | 0 | 41 | 1 | 5 | 6 | 0 | 0 | 2 | 1 | 1 | 4 | 0 | 0 | |
360 | 10 | 0 | 0 | 11 | 0 | 0 | 13 | 0 | 0 | 11 | 0 | 48 | 6 | 0 | 0 | 9 | 0 | 0 | 34 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, H.; Gunn, A.J.; Bennet, L.; Unsworth, C.P. Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers. Sensors 2020, 20, 1424. https://doi.org/10.3390/s20051424
Abbasi H, Gunn AJ, Bennet L, Unsworth CP. Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers. Sensors. 2020; 20(5):1424. https://doi.org/10.3390/s20051424
Chicago/Turabian StyleAbbasi, Hamid, Alistair J. Gunn, Laura Bennet, and Charles P. Unsworth. 2020. "Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers" Sensors 20, no. 5: 1424. https://doi.org/10.3390/s20051424
APA StyleAbbasi, H., Gunn, A. J., Bennet, L., & Unsworth, C. P. (2020). Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers. Sensors, 20(5), 1424. https://doi.org/10.3390/s20051424