Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing
Abstract
:1. Introduction
- We make full use of the respective advantages of MEC, cloudlets and fog computing to design the hierarchical edge computing architecture to support distributed IoT application environments.
- The most significant bits (MSB) of the key frame (KF) are completely controlled by users so that our proposed scheme has higher degrees of security. Meanwhile, the least significant (LSB) bits of KF are directly encrypted via MSB to avoid unnecessary computation burden of edge computing and extra storage pressure of local sensor devices.
- The two-layer parallel compressive sensing is used to compress the non-key frame (NKF) so as to minimize the storage burden on cloud services.
2. Related Work
2.1. Bit Adaptive Diffusion
2.2. Parallel Compressive Sensing
2.3. Researches on Relevant Privacy-Protection Schemes
2.4. Researches on Relevant Edge Computing Schemes
3. Description of the Proposed Scheme
3.1. GOP Selection
- Fixed GOP values: If a certain scenario needs to analyze complex or important videos, the small values should be selected to ensure reconstruction performance, while the large values could be considered to reduce the overall sampling rate of videos and handle massive data.
- Adaptive GOP selection: In order to improve encoding efficiency and decoding performance, the adaptive GOP selection based on the perceptual hash algorithm was applied for DCVS [34]. Though the computation complexity of this algorithm is relatively high, the accuracy of selecting KF is raised substantially.
3.2. Encoding and Decoding of Key Frames
3.3. Encoding and Decoding of Non-Key Frames
- Set initial values and a control parameter .
- Iterate rounds by 2D logistic-skew tent map with and discard first l iterated values to avoid transient effects by
- Discretize and obtain two sequences (),
- Rearrange into two matrices with the size respectively.
- Exchange the pixel and from the top left corner to the bottom right corner in order where , , and are values in matrices respectively.
4. Simulation Results and Performance Evaluations
4.1. Experimental Results
4.2. Theoretical Security Analysis
4.3. Computation Complexity
4.4. Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing (Draft). NIST Spec. Publ. 2011, 800, 145. [Google Scholar]
- Zhu, W.; Luo, C.; Wang, J.; Li, S. Multimedia cloud computing. IEEE Signal Process. Mag. 2011, 28, 59–69. [Google Scholar] [CrossRef]
- Deng, Z.; Ren, Y.; Liu, Y.; Yin, X.; Shen, Z.; Kim, H.J. Blockchain-based trusted electronic records preservation in cloud storage. Comput. Mat. Contin. 2019, 58, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kong, W.; Guan, H.; Xiong, N.N. Air Quality Forecasting Based on Gated Recurrent Long Short Term Memory Model in Internet of Things. IEEE Access 2019, 7, 69524–69534. [Google Scholar] [CrossRef]
- Liu, D.; Yan, Z.; Ding, W.; Atiquzzaman, M. A Survey on Secure Data Analytics in Edge Computing. IEEE Internet Things J. 2019, 6, 4946–4967. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Cai, S.; Ma, Y.; Liu, A.; Xie, M. A Unified Trustworthy Environment based on Edge Computing in Industrial IoT. IEEE Trans. Ind. Inform. 2019. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Futur. Gener. Comp. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Jo, B.; Piran, M.J.; Lee, D.; Suh, D.Y. Efficient Computation Offloading in Mobile Cloud Computing for Video Streaming Over 5G. Comput. Mat. Contin. 2019, 61, 439–463. [Google Scholar] [CrossRef]
- Shaukat, U.; Ahmed, E.; Anwar, Z.; Xia, F. Cloudlet deployment in local wireless networks: Motivation, architectures, applications, and open challenges. J. Netw. Comput. Appl. 2016, 62, 18–40. [Google Scholar] [CrossRef]
- Bao, W.; Yuan, D.; Yang, Z.; Wang, S.; Li, W.; Zhou, B.B.; Zomaya, A.Y. Follow me fog: Toward seamless handover timing schemes in a fog computing environment. IEEE Commun. Mag. 2017, 55, 72–78. [Google Scholar] [CrossRef]
- Kang, L.W.; Lu, C.S. Distributed compressive video sensing. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009. [Google Scholar]
- Hua, Z.; Yi, S.; Zhou, Y. Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 2018, 144, 134–144. [Google Scholar] [CrossRef]
- Laue, H.E.A. Demystifying compressive sensing [Lecture notes]. IEEE Signal Process. Mag. 2017, 34, 171–176. [Google Scholar] [CrossRef]
- Fang, H.; Vorobyov, S.A.; Jiang, H.; Taheri, O. Permutation meets parallel compressed sensing: How to relax restricted isometry property for 2D sparse signals. IEEE Trans. Signal Process. 2013, 62, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Lyu, L.; Nandakumar, K.; Rubinstein, B.; Jin, J.; Bedo, J.; Palaniswami, M. PPFA: Privacy preserving fog-enabled aggregation in smart grid. IEEE Trans. Ind. Inform. 2018, 14, 3733–3744. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.; Chen, X.; Wang, G.; Liu, A.; Liu, Y. A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 3–12. [Google Scholar] [CrossRef]
- Xue, K.; Hong, J.; Ma, Y.; Wei, D.S.; Hong, P.; Yu, N. Fog-aided verifiable privacy preserving access control for latency-sensitive data sharing in vehicular cloud computing. IEEE Netw. 2018, 32, 7–13. [Google Scholar] [CrossRef]
- Gu, B.; Wang, X.; Qu, Y.; Jin, J.; Xiang, Y.; Gao, L. Context-Aware Privacy Preservation in a Hierarchical Fog Computing System. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Wang, B.; Kong, W.; Li, W.; Xiong, N.N. A dual-chaining watermark scheme for data integrity protection in Internet of Things. Comput. Mat. Contin. 2019, 58, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Mei, Y.; Jia, W.; Zheng, X.; Wang, G.; Xie, M. Edge-based differential privacy computing for sensor–cloud systems. J. Parallel Distrib. Comput. 2020, 136, 75–85. [Google Scholar] [CrossRef]
- Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Qi, L.; Wu, J.; Hayajneh, T. Preserving Balance between Privacy and Data Integrity in Edge-Assisted Internet of Things. IEEE Internet Things J. 2019. [Google Scholar] [CrossRef]
- He, S.; Zeng, W.; Xie, K.; Yang, H.; Lai, M.; Su, X. PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid. KSII Trans. Internet Inf. Syst. 2017, 11, 1510–1532. [Google Scholar]
- Xie, K.; Ning, X.; Wang, X.; He, S.; Ning, Z.; Liu, X.; Wen, J.; Qin, Z. An efficient privacy-preserving compressive data gathering scheme in WSNs. Inf. Sci. 2017, 390, 82–94. [Google Scholar] [CrossRef]
- Gu, K.; Yang, L.; Yin, B. Location Data Record Privacy Protection based on Differential Privacy Mechanism. Inf. Technol. Control. 2018, 47, 639–654. [Google Scholar] [CrossRef] [Green Version]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition of The MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 13–16 August 2012. [Google Scholar]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Paper 2015, 11, 1–16. [Google Scholar]
- Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The case for vm-based cloudlets in mobile computing. IEEE Pervasive Comput. 2009, 8, 14–23. [Google Scholar] [CrossRef]
- Mora-Gimeno, F.J.; Mora-Mora, H.; Marcos-Jorquera, D.; Volckaert, B. A secure multi-tier mobile edge computing model for data processing offloading based on degree of trust. Sensors 2018, 18, 3211. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, J. Hierarchical mobile edge computing architecture based on context awareness. Appl. Sci. 2018, 8, 1160. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Wen, W. Joint optimization for task offloading in edge computing: An evolutionary game approach. Sensors 2019, 19, 740. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, D.; Lee, J. Zone-based multi-access edge computing scheme for user device mobility management. Appl. Sci. 2019, 9, 2308. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ding, F.; Zhang, D. Perceptual hash algorithm-based adaptive GOP selection algorithm for distributed compressive video sensing. IET Image Process. 2017, 12, 210–217. [Google Scholar] [CrossRef]
- Ravelomanantsoa, A.; Rabah, H.; Rouane, A. Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 2015, 64, 3405–3413. [Google Scholar] [CrossRef] [Green Version]
- Li, C. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing. Ph.D. Thesis, Rice University, Houston, TX, USA, 2010. [Google Scholar]
Encoding | Decoding | |
---|---|---|
MSB | 0.106 | 0.123 |
LSB | 0.841 | 0.905 |
The First PCS | The Second PCS | Encryption |
---|---|---|
0.017 | 0.035 | 0.061 |
Decryption | The First Reconstruction | The Second Reconstruction |
---|---|---|
0.05 | 29.09 | 31.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Li, M.; Zheng, H. Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing. Sensors 2020, 20, 1517. https://doi.org/10.3390/s20051517
Xiao D, Li M, Zheng H. Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing. Sensors. 2020; 20(5):1517. https://doi.org/10.3390/s20051517
Chicago/Turabian StyleXiao, Di, Min Li, and Hongying Zheng. 2020. "Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing" Sensors 20, no. 5: 1517. https://doi.org/10.3390/s20051517
APA StyleXiao, D., Li, M., & Zheng, H. (2020). Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing. Sensors, 20(5), 1517. https://doi.org/10.3390/s20051517