Laser-based Thickness Control in a Double-Side Polishing System for Silicon Wafers
Abstract
:1. Introduction
2. A Double-Side Polishing System for Si Wafers
2.1. Polishing Unit with Feedback Control
2.2. Precise Location of Laser Probe
3. Modeling and Evaluation of Wafer Thickness
3.1. B-spline Model for Characterizing Wafer Thickness Function
3.2. Wafer Thickness Evaluation and Control Experiments
- Step 1: Obtain the raw thickness points of 0° and 90° measuring paths of Si wafer of “P-” type when scanning;
- Step 2: Explore the effects of the number of control points on the quality of the B-spline fitting of the raw thickness points, and choose an appropriate amount of control point;
- Step 3: Conduct the B-spline fitting of the raw thickness points based on deficient and superfluous control points to demonstrate the necessity of selecting the proper number of control points;
- Step 4: Contrast the results of the B-spline fitting and the biquadratic polynomial function to verify the effectiveness of the B-spline model on the characterization of the wafer thickness variation.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eda, H.; Zhou, L.; Nakano, H.; Kondo, R.; Shimizu, J.; Nagao, T. Development of Single Step Grinding System for Large Scale ϕ300 Si Wafer: A Total Integrated Fixed-Abrasive Solution. Cirp. Ann. 2001, 50, 225–228. [Google Scholar] [CrossRef]
- Sun, W.; Pei, Z.J.; Fisher, G.R. Fine grinding of silicon wafers: A mathematical model for the wafer shape. Int. J. Mach. Tools Manuf. 2004, 44, 707–716. [Google Scholar] [CrossRef]
- Lee, J.-T.; Won, J.-K.; Lee, E.-S. A study on the characteristics of a wafer-polishing process according to machining conditions. Int. J. Precis. Eng. Manuf. 2009, 10, 23–28. [Google Scholar] [CrossRef]
- Schwandner, J.; Buschhardt, T.; Koppert, R. Method for the double-side polishing of a semiconductor wafer. US Patent 8,721,390 B2, 2014. [Google Scholar]
- Sun, J.; Qin, F.; Chen, P.; An, T. A predictive model of grinding force in silicon wafer self-rotating grinding. Int. J. Mach. Tools Manuf. 2016, 109, 74–86. [Google Scholar] [CrossRef]
- Zhong, G.; Ning, Y.; Zhou, Q.; Bian, Y.; Wang, X.; Qu, X.; Wang, L.; Zhao, E. Influence of pre-polishing process on site flatness values of polished wafers. Mater. Sci. Semicond. Process. 2017, 68, 15–20. [Google Scholar] [CrossRef]
- Chowdhury, S.K.R. A feed back control system for plain bearings using film thickness measurement. Tribol. Int. 2000, 33, 29–37. [Google Scholar] [CrossRef]
- Koberstein, J.; Stein, R. Small-angle x-ray scattering measurements of diffuse phase-boundary thicknesses in segmented polyurethane elastomers. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 2181–2200. [Google Scholar] [CrossRef]
- Kita, Y.; Kasai, Y.; Hashimoto, S.; Iiyama, K.; Takamiya, S. Application of Brightness of Scanning Electron Microscope Images to Measuring Thickness of Nanometer-Thin SiO2 Layers on Si Substrates. Jpn. J. Appl. Phys. 2001, 40, 5861. [Google Scholar] [CrossRef]
- Zarzycki, A.; Galeano, J.; Bargiel, S.; Andrieux, A.; Gorecki, C. An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO2 Layer. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Cheng, J.; Bian, D.; Lu, Y.; Yu, L. Surface profile measurement of doped silicon using near-infrared low-coherence light. Appl. Opt. 2019, 58, 7436–7442. [Google Scholar] [CrossRef]
- Lee, H.-J.; Joo, K.-N. Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer. Meas. Sci. Technol. 2014, 25, 075202. [Google Scholar] [CrossRef]
- Li, T.; Miao, W.; Diwei, F.; Chunlei, W.; Gaojie, W.; Dong, W. Thickness measurement of Si substrate with infrared laser of Optical Beam Induced Resistor Change (OBIRCH) in failure analysis. Proc. 20th IEEE Int. Symp. Phys. Fail. Anal. Integr. Circuits (IPFA) 2013, 32–34. [Google Scholar]
- Pouli, P.; Melessanaki, K.; Giakoumaki, A.; Argyropoulos, V.; Anglos, D. Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1163–1171. [Google Scholar] [CrossRef]
- Song, L.; Sun, S.; Yang, Y.; Zhu, X.; Guo, Q.; Yang, H. A Multi-View Stereo Measurement System Based on a Laser Scanner for Fine Workpieces. Sensors 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloeck, B.; Collins, S.D.; Rooij, N.F.d.; Smith, R.L. Study of electrochemical etch-stop for high-precision thickness control of silicon membranes. IEEE Trans. Electron Devices 1989, 36, 663–669. [Google Scholar] [CrossRef]
- Chung, G.-S. Study of electrochemical etch-stop for high-precision thickness control of single-crystal Si in aqueous TMAH: IPA: Pyrazine solutions. Microelectron. Eng. 2008, 85, 271–277. [Google Scholar] [CrossRef]
- Yadan, Z.; Ming, F.; Kui, Y. Precise Control of Thickness Uniformity in Mo/Si Soft X-Ray Multilayer. Acta Opt. Sin. 2011, 31, 1131001. [Google Scholar] [CrossRef]
- Florussen, G.H.J.; Delbressine, F.L.M.; MolengraftM, J.G.v.d. Assessing geometrical errors of multi-axis machines by three-dimensional length measurements. Meas. Sci. Technol. 2001, 30, 241–255. [Google Scholar] [CrossRef]
- Kono, D.; Matsubara, A.; Yamaji, I.; Fujita, T. High-precision machining by measurement and compensation of motion error. Int. J. Mach. Tools Manuf. 2008, 48, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Tang, J.; Shao, W.; Zhou, Y.; Wan, G. Optimal modification of tooth flank form error considering measurement and compensation of cutter geometric errors for spiral bevel and hypoid gears. Mech. Mach. Theory 2017, 118, 14–31. [Google Scholar] [CrossRef]
- Kermarrec, G.; Alkhatib, H.; Neumann, I. On the Sensitivity of the Parameters of the Intensity-Based Stochastic Model for Terrestrial Laser Scanner. Case Study: B-Spline Approximation. Sensors 2018, 18, 2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.; Leach, R. Overview of Tomography Techniques to Measure Wafer Thickness in MEMS Structures; NPL: Teddington, UK, 2008. [Google Scholar]
- Zhu, W.; Wang, Z.; Yamazaki, K. Machine tool component error extraction and error compensation by incorporating statistical analysis. Int. J. Mach. Tools Manuf. 2010, 50, 798–806. [Google Scholar] [CrossRef]
Parameter | Unit | Specification |
---|---|---|
Thickness measurement range | μm | 3–1325 |
Working distance | mm | 3–1000 |
Repeatability(1σ) | nm | ≤35 |
Measurement frequency | Hz | 30,000 |
Beam spot size | mm | Φ2.7 |
Operation temperature range | degC | 25+/−5 |
Storage temperature range | degC | 10–40 |
Storage humidity range | % | ≤80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Mei, B.; Zhu, W.; Li, W. Laser-based Thickness Control in a Double-Side Polishing System for Silicon Wafers. Sensors 2020, 20, 1603. https://doi.org/10.3390/s20061603
Zhu L, Mei B, Zhu W, Li W. Laser-based Thickness Control in a Double-Side Polishing System for Silicon Wafers. Sensors. 2020; 20(6):1603. https://doi.org/10.3390/s20061603
Chicago/Turabian StyleZhu, Liang, Biao Mei, Weidong Zhu, and Wei Li. 2020. "Laser-based Thickness Control in a Double-Side Polishing System for Silicon Wafers" Sensors 20, no. 6: 1603. https://doi.org/10.3390/s20061603
APA StyleZhu, L., Mei, B., Zhu, W., & Li, W. (2020). Laser-based Thickness Control in a Double-Side Polishing System for Silicon Wafers. Sensors, 20(6), 1603. https://doi.org/10.3390/s20061603