Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network
Abstract
:1. Introduction
2. Related Research and Research Purpose
2.1. Sensor Fault Detection and Identification
2.2. Online Monitoring (OLM) Techniques and the Proposed Model
3. Operator Actions in Emergency Situations
4. Method
4.1. Consistency Index
4.2. Sensor Error Modes
4.3. Data Preprocessing
4.4. Long-Short Term Memory Network
5. Applications
5.1. Data Extraction
5.2. Application Results
5.2.1. Error Criteria
5.2.2. Error Detection Time Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- “Instrumentation and Control (I&C) Systems in Nuclear Power Plants: A Time of Transition ”. Available online: https://www-legacy.iaea.org/About/Policy/GC/GC52/GC52InfDocuments/English/gc52inf-3-att5_en.pdf (accessed on 15 March 2020).
- Lee, S.J.; Kim, J.; Jang, S.-C. Human error mode identification for NPP main control room operations using soft controls. J. Nucl. Sci. Technol. 2011, 48, 902–910. [Google Scholar] [CrossRef]
- Norman, D.A. Errors in human performance. California Univ San Diego LA JOLLA Center For Human Information Processing. Tech. Rep. 1980. [Google Scholar]
- Coble, J.B.; Meyer, R.M.; Ramuhalli, P.; Bond, L.J.; Hash, H.; Brent, S.; Dara, C. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2012. [Google Scholar]
- Shaheryar, A.; Yin, X.-C.; Hao, H.-W.; Ali, H.; Iqbal, K. A denoising based autoassociative model for robust sensor monitoring in nuclear power plants. Sci. Tech. Nucl. Installations 2016, 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Hines, J.W.; Garvey, D.; Seibert, R.; Usynin, A. Theoretical issues. In Technical Review of On-Line Monitoring Techniques for Performance Assessment; NUREG/CR-6895, ORNL/TM-2007/188; U.S. NRC: Washington, DC, USA, 2006. [Google Scholar]
- Lee, S.J.; Seong, P.H. Design of an integrated operator support system for advanced NPP MCRs: issues and perspectives. In Progress of Nuclear Safety for Symbiosis and Sustainability; Springer: Tokyo, Japan, 2014; pp. 11–26. [Google Scholar]
- Zug, S.; Dietrich, A.; Kaiser, J. Fault-handling in networked sensor systems. Available online: https://www.researchgate.net/profile/Sebastian_Zug/publication/233970315_Fault-Handling_in_Networked_Sensor_Systems/links/09e4150d97da96b852000000/Fault-Handling-in-Networked-Sensor-Systems.pdf (accessed on 15 March 2020).
- Agarwal, D.; Singh, C.K. Model-Based Fault Detection on Modern Automotive Engines. In Advanced Engine Diagnostics; Springer: Singapore, 2019; pp. 167–204. [Google Scholar]
- López-Estrada, F.R.; Theilliol, D.; Astorga-Zaragoza, C.M.; Ponsart, J.C.; Valencia-Palomo, G.; Camas-Anzueto, J. Fault diagnosis observer for descriptor Takagi-Sugeno systems. Neurocomputing 2019, 331, 10–17. [Google Scholar] [CrossRef]
- Nan, C.; Khan, F.; Iqbal, M.T. Real-time fault diagnosis using knowledge-based expert system. Process Saf. Environ. Prot. 2008, 86, 55–71. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Pei, L.; Kröger, T.; Kuusniemi, H.; Liu, J. Knowledge-based error detection and correction method of a multi-sensor multi-network positioning platform for pedestrian indoor navigation. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 873–879. [Google Scholar]
- Lunderstaedt, R.A.; Hillemann, T. Knowledge based sensor fault detection for gas turbines under consideration of model based methods. In Artificial Intelligence in Real-Time Control, Proceedings of the IFAC/IFIP/IMACS Symposium, Delft, the Netherlands, 16–18 June 1992; Elsevier: Amsterdam, The Netherlands, 1993; pp. 287–292. [Google Scholar] [CrossRef]
- Jin, B.; Li, D.; Srinivasan, S.; Ng, S.K.; Poolla, K.; Sangiovanni-Vincentelli, A. Detecting and diagnosing incipient building faults using uncertainty information from deep neural networks. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA, 17–20 June 2019; pp. 1–8. [Google Scholar]
- Zheng, H.; Wang, R.; Yang, Y.; Li, Y.; Xu, M. Intelligent Fault Identification Based on Multisource Domain Generalization Towards Actual Diagnosis Scenario. IEEE Trans. Ind. Electron. 2019, 67, 1293–1304. [Google Scholar] [CrossRef]
- de los Santos-Ruiz, I.; López-Estrada, F.R.; Puig, V.; Pérez-Pérez, E.J.; Mina-Antonio, J.D.; G. Valencia-Palomo, G. Diagnosis of fluid leaks in pipelines using dynamic PCA. IFAC-Papers OnLine 2018, 51, 373–380. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M.; Pablo Amezquita-Sanchez, J.P.; Garcia-Perez, A.; Camarena-Martinez, D. Complete ensemble empirical mode decomposition on FPGA for condition monitoring of broken bars in induction motors. Mathematics 2019, 7, 783. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L. Sensor Fault Detection and Isolation Using System Dynamics Identification Techniques. PhD Thesis, University of Michigan, Ann Arbor, MI, USA, 2011. [Google Scholar]
- Jiang, Y.; Yin, S.; Kaynak, O. Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE Access 2018, 6, 47374–47384. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S. Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE Trans. Ind. Inf. 2017, 14, 1415–1423. [Google Scholar] [CrossRef]
- Brkovic, A.; Gajic, D.; Gligorijevic, J.; Savic-Gajic, I.; Georgieva, O.; Di Gennaro, S. Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery. Energy 2017, 136, 63–71. [Google Scholar] [CrossRef]
- Gligorijevic, J.; Gajic, D.; Brkovic, A.; Savic-Gajic, I.; Georgierva, O.; Di Gennaro, S. Online condition monitoring of bearings to support total productive maintenance in the packaging materials industry. Sensors 2016, 16, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, J.W.; Garvey, D.; Seibert, R.; Usynin, A. On-Line Monitoring for Calibration Extension: An Overview and Introduction to NUREG/CR-6895, Technical Review of On-Line Monitoring Techniques for Performance Assessmen; NRC: Washington, DC, USA, 2006. [Google Scholar]
- Simani, S.; Marangon, F.; Fantuzzi, C. Fault diagnosis in a power plant using artificial neural networks: analysis and comparison. In Proceedings of the 1999 European Control Conference (ECC), Karlsruhe, Germany, 31 August–3 September 1999; pp. 2270–2275. [Google Scholar]
- Fantoni, P.F.; Hoffmann, M.; HTNES, W.; RASMUSSEN, B.; Kirschner, A. The use of non linear partial least square methods for on-line process monitoring as an alternative to artificial neural networks. In Machine Intelligence: Quo Vadis? Sinčák, P., Vaščák, J., Hirota, K., Eds.; World Scientific: Danvers, MA, USA, 2004; pp. 283–298. [Google Scholar] [CrossRef]
- Zavaljevski, N.; Gross, K.C. Sensor Fault Detection in Nuclear Power Plants using Multivariate State Estimation Technique and Support Vector Machines; Argonne National Lab.: Argonne, IL, USA, 2000. [Google Scholar]
- Garvey, J.; Garvey, D.; Seibert, R.; Hines, J.W. Validation of on-line monitoring techniques to nuclear plant data. Nucl. Eng. Technol. 2007, 39, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Tamilselvan, P.; Wang, P.; Youn, B.D. Multi-sensor health diagnosis using deep belief network based state classification. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 18–31 August 2011; pp. 749–758. [Google Scholar]
- Rocco, S.; Claudio, M.; Zio, E. A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems. Reliab. Eng. Syst. Saf. 2007, 92, 593–600. [Google Scholar] [CrossRef]
- Baraldi, P.; Di Maio, F.; Genini, D.; Zio, E. Comparison of data-driven reconstruction methods for fault detection. IEEE Trans. Reliab. 2015, 64, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Pressurized Water Reactor Simulator; Training Course Series No. 22; International Atomic Energy Agency: Vienna, Austria, 2003.
- Choi, J.-G.; Lee, D.-Y. Development of RPS trip logic based on PLD technology. Nucl. Eng. Technol. 2012, 44, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Choi, J.; Park, J.; Jung, W.; Lee S., J. Estimating Diagnosis Time of Emergency Situations in Digitalized Control Rooms. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Orlando, FL, USA, 22–26 July 2018. [Google Scholar]
- Accident Analysis for Nuclear Power Plants; Safety Reports Series No. 23; International Atomic Energy Agency: Vienna, Austria, 2002.
- Development and Review of Plant Specific Emergency Operating Procedures; Safety Reports Series No. 48; International Atomic Energy Agency: Vienna, Austria, 2006.
- Lee, S.J.; Kim, J.; Jang, S.-C.; Shin, Y.C. Modeling of a dependence between human operators in advanced main control rooms. J. Nucl. Sci. Technol. 2009, 46, 424–435. [Google Scholar] [CrossRef]
- Hashemian, H.M. Aging management of instrumentation & control sensors in nuclear power plants. Nucl. Eng. Des. 2010, 240, 3781–3790. [Google Scholar]
- Rabinovich, S.G.; Rabinovich, M. Evaluating Measurement Accuracy; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef] [Green Version]
- Mikolov, T.; Karafiat, M.; Burget, L.; Cernocky, J.; Khudanpur, S. Recurrent neural network based language model. In In Proceedings of the Eleventh annual conference of the international speech communication associatio, Chiba, Japan, 26–30 September 2010. [Google Scholar]
- Boden, M. A guide to recurrent neural networks and backpropagation; SICS TECHNICAL REPORT T2002:03; The Dallas Project: Dallas, TX, USA, 2002. [Google Scholar]
- Kawakami, K. Supervised sequence labelling with recurrent neural networks. Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2008. [Google Scholar]
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3−6 December 2012; pp. 1097–1105. [Google Scholar]
- Bae, J.; Ahn, J.; Lee, S.J. Comparison of Multilayer Perceptron and Long Short-Term Memory for Plant Parameter Trend Prediction. Nucl. Technol. 2019, 1–11. [Google Scholar] [CrossRef]
- Park, J.-C. Equipment and Performance Upgrade of Compact Nuclear Simulator; KAERI/RR-1967/1999; KAERI: Daejeon, Korea, 1999. [Google Scholar]
- Kwon, K.-C.; Park, J.-C.; Jung, C.-H.; Lee, J.-S.; Kim, J.-Y. Compact nuclear simulator and its upgrade plan. In Proceedings of the IAEA specialists’ meeting on training simulators in nuclear power plants: experience, programme design and assessment methodology, Essen, Germany, 17–19 November 1997. [Google Scholar]
- Miettinen, J.; Tuomisto, H.; Kantee, H.; Kervinen, T. Oscillations of single-phase natural circulation during overcooling transients. In Anticipated and Abnormal Transients in Nuclear Power Plants; American Nuclear Society: Atlanta, GA, USA, 1987. [Google Scholar]
- Miettinen, J. Development and assessment of the SBLOCA code SMABRE. In Proceedings of the CSNI Specialists’ Meeting on Small Break LOCA Analyses in LWRs, Pisa, Italy, 23–27 June 1985; pp. 481–495. [Google Scholar]
- Lee, D.; Seong, P.H.; Kim, J. Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework. Ann. Nucl. Energy 2018, 119, 287–299. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J. An accident diagnosis algorithm using long short-term memory. Nucl. Eng. Technol. 2018, 50, 582–588. [Google Scholar] [CrossRef]
- No, Y.G.; Lee, C.; Seong, P.H. Development of a prediction method for SAMG entry time in NPPs using the extended group method of data handling (GMDH) model. Ann. Nucl. Energy 2018, 121, 552–566. [Google Scholar] [CrossRef]
Plant Parameter (Units) | |
---|---|
1 | PRESSURIZER LEVEL (m) |
2 | REACTOR VESSEL WATER LEVEL (m) |
3 | CONTAINMENT RADIATION. (mRem/hr) |
4 | COLD-LEG #1 TEMPERATURE (°C) |
5 | HOT-LEG #1 TEMPERATURE (°C) |
6 | CORE OUTLET TEMPERATURE. (°C) |
7 | STEAM GENERATOR #1 LEVEL, WIDE RANGE (m) |
8 | STEAM GENERATOR #2 LEVEL, WIDE RANGE (m) |
9 | STEAM GENERATOR #3 LEVEL, WIDE RANGE (m) |
10 | SECONDARY SYSTEM RADIATION (mRem/hr) |
11 | STEAM GENERATOR #1 PRESSURE (Pa) |
12 | STEAM GENERATOR #2 PRESSURE (Pa) |
13 | STEAM GENERATOR #3 PRESSURE (Pa) |
14 | PRESSURIZER PRESSURE (Pa) |
15 | FEED WATER LINE 1 FLOW (kg/sec) |
16 | FEED WATER LINE 2 FLOW (kg/sec) |
17 | FEED WATER LINE 3 FLOW (kg/sec) |
18 | CONTAINMENT SUMP WATER LEVEL (m) |
19 | STEAM LINE 1 FLOW (kg/sec) |
20 | STEAM LINE 2 FLOW (kg/sec) |
21 | STEAM LINE 3 FLOW (kg/sec) |
C Index | <0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.7 | 0.7–0.8 | 0.8–0.9 | >0.9 | Total |
Normal | 0 | 0 | 0 | 0 | 17(0.79%) | 37(1.72%) | 2098(97.49%) | 2152 |
Error | 6751(72.77%) | 2514(27.10%) | 12(0.13%) | 0 | 0 | 0 | 0 | 9277 |
C index | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 |
Detection Time (s) | 60.20 | 98.52 | 116.11 | 130.13 | 132.14 | 134.02 | 135.58 | 137.55 | 140.01 | 670.31 |
Accident | Error Mode | Pressurizer Pressure | Containment Radiation | Secondary Radiation | SG #1 Pressure | SG #1 Level | SG #2 Pressure | SG #2 Level |
---|---|---|---|---|---|---|---|---|
LOCA | Normal | success | success | success | success | success | success | success |
Stuck | 71.56 | 16.26 | — | 218.02 | 15.17 | 236.11 | 138.85 | |
Slow drift | 69.89 | 41.72 | 11.15 | 85.03 | 21.16 | 195.33 | 14.26 | |
Rapid drift | 53.45 | 23.63 | 7.93 | 56.24 | 13.73 | 110.09 | 8.83 | |
SGTR | Normal | success | success | success | success | success | success | success |
Stuck | 46.80 | — | 206.35 | 58.67 | 60.69 | 15.36 | 91.83 | |
Slow drift | 45.64 | 6.70 | 151.74 | 112.17 | 18.45 | 218.41 | 19.24 | |
Rapid drift | 34.88 | 4.63 | 125.18 | 86.46 | 13.13 | 121.22 | 11.40 | |
ESDE | Normal | success | success | success | success | success | success | success |
Stuck | 99.71 | — | — | 173.48 | 60.17 | 85.40 | 118.27 | |
Slow drift | 81.35 | 5.98 | 10.34 | 90.69 | 81.36 | 103.10 | 45.85 | |
Rapid drift | 52.59 | 4.17 | 7.98 | 54.59 | 39.78 | 71.03 | 36.37 | |
LOAF | Normal | success | success | success | success | success | success | success |
Stuck | 24.33 | — | — | 63.00 | 13.00 | 112.00 | 9.50 | |
Slow drift | 17.83 | 4.00 | 11.50 | 56.00 | 9.83 | 119.50 | 11.92 | |
Rapid drift | 16.17 | 2.50 | 8.50 | 45.17 | 5.00 | 80.00 | 5.58 |
Accident | Error Mode | SG #3 Pressure | SG #3 Level | Reactor Vessel Water Level | Cold-Leg #1 Temperature | Hot-Leg #1 Temperature | Outlet Temperature |
---|---|---|---|---|---|---|---|
LOCA | Normal | success | success | success | success | success | success |
Stuck | 220.25 | 15.39 | 140.09 | 343.00 | — | 338.00 | |
Slow drift | 82.35 | 21.72 | 129.30 | 342.67 | 334.41 | 355.51 | |
Rapid drift | 15.29 | 13.79 | 92.38 | 128.00 | 134.72 | 135.52 | |
SGTR | Normal | success | success | success | success | success | success |
Stuck | 17.27 | 116.30 | 246.11 | — | — | 319.50 | |
Slow drift | 125.59 | 19.54 | 21.63 | 311.11 | 294.01 | 282.58 | |
Rapid drift | 64.83 | 14.07 | 14.06 | 168.56 | 175.07 | 175.45 | |
ESDE | Normal | success | success | success | success | success | success |
Stuck | 77.38 | 149.75 | 10.00 | 161.41 | 320.50 | 192.28 | |
Slow drift | 111.77 | 64.55 | 66.46 | 221.59 | 286.41 | 246.61 | |
Rapid drift | 63.98 | 40.41 | 3.37 | 97.10 | 178.28 | 117.52 | |
LOAF | Normal | success | success | success | success | success | success |
Stuck | 110.00 | 12.67 | — | 279.00 | 296.00 | 296.50 | |
Slow drift | 117.50 | 12.33 | 66.67 | 179.33 | 138.33 | 139.67 | |
Rapid drift | 79.00 | 7.00 | 3.67 | 77.33 | 85.00 | 83.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lee, S.J. Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network. Sensors 2020, 20, 1651. https://doi.org/10.3390/s20061651
Choi J, Lee SJ. Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network. Sensors. 2020; 20(6):1651. https://doi.org/10.3390/s20061651
Chicago/Turabian StyleChoi, Jeonghun, and Seung Jun Lee. 2020. "Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network" Sensors 20, no. 6: 1651. https://doi.org/10.3390/s20061651
APA StyleChoi, J., & Lee, S. J. (2020). Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network. Sensors, 20(6), 1651. https://doi.org/10.3390/s20061651